K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

a) a) Để Amin thì |3y+15|min

mà |3y+15| là giá trị tuyệt đối -> luôn luôn lớn hơn hoặc bằng 0

-> |3y+15|min = 0

-> 3y = -15

-> y = -5

Vậy GTNN của A=|3y+15| + 2 = 2

b) Để (2x + 2016 )2016min thì (2x+2016)min

mà 2x > 0, 2016 > 0 -> 2x+2016 sẽ lớn hơn hoặc bằng 0

-> (2x+2016)min=0

-> 2x = -2016

-> x = -1008

Vậy GTNN của B= (2x + 2016 )2016 = 0

 
28 tháng 11 2016

min là j vậy

 

7 tháng 8 2019

\(A=\left(5-x\right)^{2016}+|2y+6|-2015\)

Vì \(\left(5-x\right)^{2016}=[\left(5-x\right)^{1008}]^2\ge0,\forall x\)

\(|2y+6|\ge0,\forall y\)

nên \(A=\left(5-x\right)^{2016}+|2y+6|-2015\)\(\ge0+0-2015=2015,\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(5-x\right)^{2016}=0\\|2y+6|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5-x=0\\2y+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

Vậy GTNN của A bằng -2015 \(\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

\(B=\frac{-144}{\left(2x+1\right)^4+12}\)

Vì \(\left(2x+1\right)^4=[\left(2x+1\right)^2]^2\ge0,\forall x\)

nên \(\left(2x+1\right)^4+12\ge0+12=12,\forall x\)

\(\Rightarrow B=\frac{-144}{\left(2x+1\right)^4+12}\ge\frac{-144}{12}=-12,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^4=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của B bằng -12\(\Leftrightarrow x=-\frac{1}{2}\)

Chúc bạn học tốt ! Nguyen thi ngoc yen

cảm ơn bạn nha

9 tháng 5 2016

A=(2x-3)2+7

Vì (2x-3)2 \(\ge\) 0 với mọi x

=>(2x-3)2+7 \(\ge\) 7 với mọi x

=>AMin=7

Dấu "=" xảy ra<=>2x-3=0<=>x=3/2

B=15-|2x+1|

Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x

=>15-|2x+1| \(\le\) 15 với mọi x

=>BMax=15

Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2

\(C=\frac{6}{\left(3x+2\right)^2+18}\)

C lớn nhất <=> (3x+2)2+18 nhỏ nhất

Vì (3x+2)2+18 \(\ge\) 18 với mọi x

=>\(C\le\frac{6}{18}=\frac{1}{3}\)

=>CMax=1/3

Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3

D=(x2+2)2-21

Vì x2+2 \(\ge\) 2 với mọi x

=>(x2+2)2 \(\ge\) 22=4 với mọi x

=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x

=>DMin=-17

Dấu "=" xảy ra<=>x=0

28 tháng 11 2016

\(\left(x-2016\right)^2\ge0\Rightarrow A_{min}=0+2017=2017\)khi đó : \(\left(x-2016\right)^2=0\Rightarrow x-2016=0\Rightarrow x=2016\)

Vậy \(A\)đạt giá trị nhỏ nhất là 2017 khi x=2016

Chúc bạn học giỏi,

2 tháng 7 2019

a) Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(x-3=0\)

                                 \(\Rightarrow x=3\)

Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018

b)Vì \(\left|x-5\right|\ge0\)

\(\Rightarrow\left|x-5\right|+2016\ge2016\)

Dấu "=" xảy ra khi \(x-5=0\)

                                 \(\Rightarrow x=5\)

Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016

c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất

\(\Rightarrow x-3< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-3\le-1\)

Dấu "=" xảy ra khi \(x=-1+3=2\)

Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)

d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)

D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất

\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất

\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN

\(\Rightarrow x-5< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-5\le-1\)

Dấu "=" xảy ra khi \(x=-1+5=4\)

Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)

~Học tốt^^~

2 tháng 7 2019

Phần kết luận: Vậy với x=...... thì "biểu thức"...

em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý

8 tháng 1 2017

a) Để Bmin thì GTTĐ của x + 1 bé nhất . Suy ra GTTĐ của x + 1 = 0

Suy ra x + 1 = 0 .  Vậy x = -1 thì Bmin

b) Để Cmin thì GTTĐ của x - 3 ; (y+1)2 bé nhất

Suy ra GTTĐ của x - 3 = 0 và ( y+1)2 =0

+ Suy ra (y+1)=0 . Suy ra y+1=0.Suy ra y = -1

Vậy x = 3 , y = -1 thì Cmin

8 tháng 1 2017

Thanks nhe

13 tháng 3 2017

=2 nha bạn