Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|X+22|+|-X-12|+|X+1944|</ |X+22|+|-X-12+X+1944|
A>|X+22|+|1982|
A>|X+22|+1982
=>A>1982
<=>(-X-12)(X+1944) >0 VA X+22=0
=>X=-22
=> GTNN LA -22
A = |x + 22| + |x + 12| + |x + 1944| = |x + 22| + |- x - 12| + |x + 1944|
A ≥ |- x - 12 + x + 1944| + |x + 22| ( Theo bđt |a| + |b| ≥ |a + b| )
A ≥ |1932| + |x + 22| = 1932 + |x + 22|
Dấu "=" xảy ra <=> (- x - 12)(x + 1944) ≥ 0 và |x + 22| = 0
=> x = - 22 ( thỏa mãn )
Vậy gtnn của A là 1932 tại x = - 22
\(M=\left|x-22\right|+\left|x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge34\)
\(M\ge34\)
Dấu "\(=\)" xảy ra khi:
\(\left(22-x\right)\left(x+12\right)\ge0\)
\(TH1:22-x\ge0;x+12\ge0\)
\(\Rightarrow22\ge x\ge-12\)
\(TH2:22-x\le0;x+12\ge0\)
\(\Rightarrow22\le x;x\ge12\left(vô.lý\right)\)
Vậy \(GTNN\) của \(M\) là \(34\) khi \(22\ge x\ge-12\)
Áp dụng BĐT trị tuyệt đối:
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|=34\)
Vậy \(M_{min}=34\) khi \(\left(22-x\right)\left(x+12\right)\ge0\Rightarrow-12\le x\le22\)
\(D=\left|2x-22\right|+\left|12-x\right|+2\left|x-13\right|\)
\(D=\left|2x-22\right|+\left|12-x\right|+2\left|13-x\right|\)
+ Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a,b\)
Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|2x-22\right|+2\left|13-x\right|\ge\left|2x-22+26-2x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-22\right)\left(13-x\right)\ge0\)
\(\Leftrightarrow11\le x\le13\) (1)
+ \(\left|12-x\right|\ge0\forall x\). Dấu "=" xảy ra \(\Leftrightarrow x=12\) (2)
+ Từ (1) và (2) => \(D\ge4\) . Dấu "=" xảy ra \(\Leftrightarrow x=12\)
Vậy \(Min\) D = 4 \(\Leftrightarrow x=12\)
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
Do l2x-22I \(\ge0\)
l12-xl\(\ge0\)
2lx-13l\(\ge0\)
Nên D=l2x-22l+l12-xl+2lx-13l\(\ge0\)
Min D = 0\(\Leftrightarrow\hept{\begin{cases}2x-22=0\\12-x=0\\x-13=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\x=12\\x=13\end{cases}}}\)
Vậy ko có gtri x thỏa mãn khi Min D =0
thanks