Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT
Áp dụng BĐT trị tuyệt đối:
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|=34\)
Vậy \(M_{min}=34\) khi \(\left(22-x\right)\left(x+12\right)\ge0\Rightarrow-12\le x\le22\)
bạn chia trên tử dưới mẫu ra ta được -1+1\(x-2013)...-1 không thay đổi mà để nó là số nguyên thì x-2013 chia hết cho 1 nên x=2012 or 2014 mà đề cho là số nguyên nhỏ nhất nên x=2012 vây M=-2 là nhỏ nhất
\(M=\left|x-y+1\right|-\left(x-3\right)\left(3-x\right)-1=\left|x-y+1\right|+\left(x-3\right)^2-1\)
Mà \(\left|x-y+1\right|+\left(x-3\right)^2\ge0\) với mọi x, y \(\Rightarrow\left|x-y+1\right|+\left(x-3\right)^2-1\ge-1\)với mọi x, y
Hay \(M\ge-1\) với mọi x, y
Vậy Mmin = -1 khi x - 3 = 0 và x - y + 1 = 0 => x = 3 và y = 4
\(M=\frac{1+2013-x}{x-2013}=\frac{1}{x-2013}+\frac{2013-x}{x-2013}=\frac{1}{x-2013}-1\)
Đê M nhỏ nhất thì \(\frac{1}{x-2013}\) là số nguyên âm nhỏ nhất => \(\frac{1}{2013-x}\) là số nguyên dương lớn nhất => 2013 - x là số nguyên dương nhỏ nhất
=> 2013 - x = 1 => x = 2013 - 1 = 2012
Vậy x = 2012 thì M nhỏ nhất
A=|X+22|+|-X-12|+|X+1944|</ |X+22|+|-X-12+X+1944|
A>|X+22|+|1982|
A>|X+22|+1982
=>A>1982
<=>(-X-12)(X+1944) >0 VA X+22=0
=>X=-22
=> GTNN LA -22
A = |x + 22| + |x + 12| + |x + 1944| = |x + 22| + |- x - 12| + |x + 1944|
A ≥ |- x - 12 + x + 1944| + |x + 22| ( Theo bđt |a| + |b| ≥ |a + b| )
A ≥ |1932| + |x + 22| = 1932 + |x + 22|
Dấu "=" xảy ra <=> (- x - 12)(x + 1944) ≥ 0 và |x + 22| = 0
=> x = - 22 ( thỏa mãn )
Vậy gtnn của A là 1932 tại x = - 22
???
\(M=\left|x-22\right|+\left|x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge34\)
\(M\ge34\)
Dấu "\(=\)" xảy ra khi:
\(\left(22-x\right)\left(x+12\right)\ge0\)
\(TH1:22-x\ge0;x+12\ge0\)
\(\Rightarrow22\ge x\ge-12\)
\(TH2:22-x\le0;x+12\ge0\)
\(\Rightarrow22\le x;x\ge12\left(vô.lý\right)\)
Vậy \(GTNN\) của \(M\) là \(34\) khi \(22\ge x\ge-12\)