Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
Dấu '' = '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)
Vậy GTLN của biểu thức = 3/4 khi x=-1/2
\(b,2+x-x^2=-x^2+x+2\)
\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)
Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2
Vậy GTNN của biểu thức = 9/4 khi x=1/2
\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)
Dấu ''='' xảy ra khi x-2=0 => x=2
Vậy GTLN của biểu thức = -3 khi x=2
Các câu khác tương tự
\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)
Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2
Vậy GTNN của biểu thức =10 khi x=-1/2
\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)
Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)
Dấu ''='' xảy ra khi x-1=0 => x=1
Vậy GTNN của biểu thức =-2 khi x=1
\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)
Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của biểu thức =1 khi x=1 và y=2
GTNN :
B=4x2+4x+11
= (2x)2+2*x*2+22+7
=(2x+2)2+7>= 7
dấu ''='' sảy ra khi 2x+2=0
=> x = -1
vậy GTNN của biểu thức B là 7 tại x = -1
\(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dau "=" xay ra <=> \(x=-\frac{1}{2}\)
Vay.....
\(A=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy \(MaxA=\frac{25}{4}\) khi \(x=\frac{5}{2}\)
\(B=x-x^2-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MaxB=\frac{1}{4}\) khi \(x=\frac{1}{2}\)
\(C=4x-x^2+3=7-\left(4-4x+x^2\right)=7-\left(2-x\right)^2\le7\forall x\)
Dấu '' = '' xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy \(MaxC=7\) khi \(x=2\)
a) \(A=x^2+6x+11\)
\(A=x^2+6x+9+2\)
\(A=\left(x+3\right)^2+2\)
Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy: \(Min_A=2\) tại \(x=-3\)
b) \(B=4x-x^2+1\)
\(B=-x^2+4x-4+5\)
\(B=-\left(x-2\right)^2+5\)
\(B=5-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow5-\left(x-2\right)^2\le5\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_B=5\) tại \(x=2\)
a) \(A=\left(x^2-2.2x+4\right)-3\)
\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)
Vậy minA = -3 khi x = 2
b) \(B=4x^2+4x+11\)
\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)
\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)
Vậy min B = 10 khi x = -1/2
c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Vậy MinC= -36 khi x =0 và x = -5
d) \(D=2x^2+y^2-2xy+2x-4y+9\)
\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)
\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)
\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy min D = 4 khi x = 1 và y = 3
\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)
Vậy \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)
Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)
Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)
\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)
Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)
Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)
Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)
F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)
Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)
\(a,A=5x-x^2\)
\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Vậy Max A = \(\dfrac{25}{4}\) khi \(x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\)
\(b,B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Vậy Max B = \(\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(c,4x-x^2+3=7-\left(4-4x+x^2\right)\)
\(=7-\left(2-x\right)^2\le7\forall x\)
vậy Max C = 7 khi 2 - x =0 => x = 2
\(d,D=-x^2+8x-11=-\left(x^2-8x+16\right)+5\)
\(=-\left(x-4\right)^2+5\le5\forall x\)
vậy Max D = 5 khi x - 4 = 0 => x = 4
\(e,E=5-8x-x^2=21-\left(16+8x+x^2\right)\)
\(=21-\left(4+x\right)^2\le21\forall x\)
Vậy Max E = 21 khi 4 + x = 0 => x = -4
\(f,F=4x-x^2+1=5-\left(4-4x+x^2\right)\)
\(=5-\left(4-x\right)^2\le5\forall x\)
Vậy Max F = 5 khi 4 - x =0 => x = 4
F =x^4-6x^3+9x^2+x^2-6x+9
=(x^2-3x)^2 + (x-3)^2
ta thấy (x^2-3x)^2 >= 0
(x-3)^2>=0
=>GTNN của C là 0
dấu bằng xảy ra khi và chỉ khi x=3