K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là số nguyên thì \(x-3\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{4;2;5;1\right\}\)

b: Để B là số nguyên thì \(x+2-5⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-1;-3;3;-7\right\}\)

d: Để D là số nguyên thì \(3x^2+2x-3x-2+3⋮3x+2\)

\(\Leftrightarrow3x+2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-\dfrac{1}{3};-1;\dfrac{1}{3};-\dfrac{5}{3}\right\}\)

8 tháng 4 2020

\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(Q=x^3+y^3+3xy\left(x+y\right)-2\left(x^2+y^2+2xy\right)+3\left(x+y\right)+10\)

\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)

Thay x + y = 5 vào ta có :

\(Q=5^3-2.5^2+3.5+10\)

\(Q=100\)

8 tháng 4 2020

.......~~~4 năm sau~~~........

17 tháng 6 2016

 

A=x (x+1) (x+2) (x+3)

=x(x+3)(x+1)(x+2)

=(x2+3x)+(x2+3x+2)

=(x2+3x)2+2(x2+3x)

=(x2+3x)2+2(x2+3x)+1-1

=(x2+3x+1)2-1\(\ge\)-1

Dấu "=" xảy ra khi x2+3x+1=0

                         <=>\(x=\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)

Vậy GTNN của A là -1 tại x=\(\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)

 

17 tháng 6 2016

 

B=x2- 4x + y2 - 8y + 6

=x2-4x+4+y2-8y+16-14

=(x-2)2+(y-4)2-14\(\ge\)-14

Dấu "=" xảy ra khi: x=2 và y=4

Vậy GTNN của B là -14 tại x=2 và y=4

 

17 tháng 7 2016

pt <=> \(x^3+9.x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3-4x^2+2x+4x^2\) -2x+1 -3x^2 =54 

<=> \(x^3+9.x^2+27x+27-9x^3-6x^2-x+8x^3-4x^2+2x+4x^2\) -2x+1 -3x^2  =54 

<=> 26x -26=0 <=> x=1 

hãy like đi :v 

11 tháng 9 2017

Bài 1:

a) \(9x^2-6x+2\)

\(\Leftrightarrow9x^2-6x+1+1\)

\(\Leftrightarrow\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x,1>0\)

\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.

b) \(x^2+x+1\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)

\(\Rightarrow x^2+x+1\) luôn dương với mọi x.

Bài 2 :

a) \(A=x^2-3x+5\)

\(\Leftrightarrow A=x^2-3x+2+3\)

\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)

\(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)

Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Leftrightarrow B=5x^2+5\)

\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.

Bài 3 :

a) \(A=-x^2+2x+4\)

Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.

b) \(B=-x^2+4x\)

Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.

Bài 1: 

a: \(\Leftrightarrow x^2-4x-x^2+8=0\)

=>-4x+8=0

hay x=2

b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)

\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)

=>2x+4=4

hay x=0

\(\Leftrightarrow\left(2x^2+x\right)^2-\left(2x^2+x\right)-3\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x-1\right)\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(2x^2+2x-x-1\right)\left(2x^2+3x-2x-3\right)=0\)

=>(x+1)(2x-1)(2x+3)(x-1)=0

\(\Leftrightarrow x\in\left\{-1;\dfrac{1}{2};-\dfrac{3}{2};1\right\}\)

9 tháng 10 2016

\(x^2-2x+y^2+4y+8=x^2-2x+1+y^2+4y+4+3=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(MinE=3\Leftrightarrow x=1;y=-2\)

9 tháng 10 2016

mà MinE là j z bạn

13 tháng 12 2016

a) \(a^4+4\)

\(=a^4+4a^2+4-4a^2\)

\(=\left(a^2+2\right)^2+\left(2a\right)^2\)

\(=\left(a^2+2a+2\right)\left(a^2-2a+2\right)\)

b) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

 

 

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)