K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

\(C=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\)

Ta có: 

|2/5 - x| >/ 0 

=> 5/2 * |2/5 -x| >/ 0

=> 5/2 * |2/5 -x| -3 >/ -3

=> 3 - 5/2 * |2/5 -x|  \<  3

Vậy GTLN của C là 3. 

5 tháng 9 2016

(2/5-x)> hoặc=0

5/2(2/5-x)> hoặc =0

3-5/2(2/5-x)< hoặc =3

=> C< hoặc =3

=> Cmax=3 khi 3-5/2(2/5-x)=3

                           5/2(2/5-x)=0

                                (2/5-x)=0

                                2/5-x=0

                                      x=2/5

Vậy GTLN của C =3 khi x=2/5

                           

1 tháng 7 2016

Ta có:

3x-1/2 = 0 

3x= 1/2

x= 1/6

và 1/2y + 3/5 =0

     1/2y = -3/5

         y= -6/5

Vậy x= 1/6 và y = -6/5

1 tháng 7 2016

\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)

Vậy ......

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

1 tháng 7 2016

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

\(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)

Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)

      \(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)

Vậy...........

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3