\(2x^2-2mx+m^2-2=0\) có hai nghiệm x1 x2 thỏa mãn H = 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

Để pt có hai nghiệm \(x_1;x_2\Leftrightarrow\Delta\ge0\)

 \(\Leftrightarrow4-m^2\ge0\) \(\Leftrightarrow m\in\left[-2;2\right]\)

Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(H=2x_1x_2-x_1-x_2+9=m^2-2-m+9\)\(=m^2-m+7\)

Ta thấy H là một parabol và m nằm trong \(\left[-2;2\right]\) ,max của chúng sẽ chỉ ở vị trí m=-2 hoặc m=2 

Tại m=-2 thì H=13

Tại m=2 thì H=9
Vậy maxH=132 khi m=-2 

(Mình chỉ biets trình bày cách này thôi, nếu bạn biết vẽ bảng biến thiên sẽ dễ hơn)

 

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

12 tháng 2 2020

Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)

                = \(m^2-2m+1=\left(m-1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)

Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)

ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT

10 tháng 5 2019

a, m=2

\(x^2-4x+3=0\)

=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

b, Phương trình có nghiệm 

=> \(\Delta'\ge0\)

=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)

Theo Vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)

Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)

Khi đó

\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)

=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)

=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)

=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)

Vậy \(m=\frac{7}{4}\)

10 tháng 5 2019

x2_2eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

10 tháng 5 2019

toi xin loi ban 

8 tháng 6 2016
co ai bt giai cau nay hk???
8 tháng 6 2016

a)dùng vi ét

b)x=-1.19640820980616,

x=1.44426494345719;