K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

Đặt \(g\left(x\right)=\left(1+x\right)\left(2+x\right)...\left(2017+x\right)\)

\(\Rightarrow g\left(0\right)=1.2.3...2017=2017!\)

\(f\left(x\right)=\dfrac{x}{g\left(x\right)}\Rightarrow f'\left(x\right)=\dfrac{g\left(x\right)-x.g'\left(x\right)}{g^2\left(x\right)}\)

\(\Rightarrow f'\left(0\right)=\dfrac{g\left(0\right)-0.g'\left(x\right)}{\left[g\left(0\right)\right]^2}=\dfrac{g\left(0\right)}{\left[g\left(0\right)\right]^2}=\dfrac{1}{g\left(0\right)}=\dfrac{1}{2017!}\)

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

9 tháng 4 2017

Ta có f(x) = (x – 1)2 = 1 và f(x) = (-x2) = 0.

f(x) ≠ nên hàm số y = f(x) gián đoạn tại x = 0, do đó hàm số không có đạo hàm tại điểm x = 0.

Ta có = = (2 + ∆x) = 2.

Vậy hàm số y = f(x) có đạo hàm tại x = 2 và f'(2) = 2.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

7 tháng 5 2016

Ta xét bảng sau đây :

x 1 2 x-1 2 x-2 f(x) 1-x 4-2x 5-3x x-1 4-2x 3-x x-1 2x-4 3x-5

Ta có ngay với \(x\ne1\) và \(x\ne2\)

\(f'\left(x\right)=\begin{cases}-3;x< 1\\-1;1< x< 2\\3;x>2\end{cases}\)

Bây giờ xét tại \(x=1\), ta có

\(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{3-\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{-\Delta x}{\Delta x}=-1\)

\(\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{5-3\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^-}\frac{-3\Delta x}{\Delta x}=-3\)

Như vậy \(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\)

Nghĩa là không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=1\)

Tương tự không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=2\)

 
NV
23 tháng 4 2021

\(f'\left(x\right)=2ax+b\)

\(f\left(x\right)+\left(x-1\right)f'\left(x\right)=ax^2+bx+c+\left(x-1\right)\left(2ax+b\right)\)

\(=3ax^2+\left(2b-2a\right)x+c-b\)

Yêu cầu bài toán thỏa mãn khi: \(\left\{{}\begin{matrix}3a=3\\2b-2a=0\\c-b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)

15 tháng 9 2023

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

loading...  loading...