K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Số nào mũ 5 lên cũng có tận cùng là chính nó hết.

Ví dụ \(1^5=1,2^5=32,3^5=243\).

Trừ những số chia hết cho 10 thì mũ 5 lên có tận cùng là 0.

Đáp số: 5

14 tháng 1 2017

À nhầm đáp số là 0

25 tháng 10 2016

tìm 3 chữ số tận cùng c ủa \(\left(1-3+4+5\right)^{2015}=7^{2015}....\) là đc

25 tháng 10 2016

casio ?

2 tháng 10 2015

220 = (210)= 10242 = (...76)

Chú ý: Lũy thừa những số có tận cùng là 76 thì tận cùng là 76

+) Ta có: 22000 = (220)100 = (...76)100 = (...76)

+) 22001 = 2.22000 = 2.(...76) = (...52)

+) 22002 = 22.22000 = 4.(...76) = (....04)

=> 22000 + 22001 + 22002 có hai chữ số tận cùng là hai chữ số tận cùng của (76 + 52 + 04) = 132

Vậy  22000 + 22001 + 22002 có tận cùng là 32

22000+22001+22002=22000(1+2+22)=22000.5=21999.10

21999=24.24...24.23

=16.16...16.8

=...8

=>21999.10=...8.10=...80

Vậy 2 chữ số tận cùng của 22000+22001+22002 là 80

6 tháng 9 2016

Ta có M = \(\left(5+2\sqrt{6}\right)^{1004}+\left(5-2\sqrt{6}\right)^{1004}\)

Ta có a2 = 10a - 1 ; b2 = 10b  -1 

Đặt Sn = an + bn 

=> \(a^{n+2}+b^{b+2}=10.\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)\)

\(=>s_{n+2}=s_{n+1}.10+s_n\)chia hết cho 10

=> \(s_n+s_{n+2}\)chia hết cho 10

Tương tự ta được \(s_{n+2}+s_{n+4}\)chia hết cho 10

=> \(s_{n+2}+s_{n+4}-s_n-s_{n+2}\)chia hết cho 10

=> \(s_{n+4}-s_n\)chia hết cho 10

Ta có S0 = 2

S1 = 10

=> s2;s3....sn là các số tự nhiên và s0;s4;...;s4n có chữ số tận cùng là 2 

Vậy M có chữ số tận cùng là 2 

1 tháng 7 2017

(mk dùng kí hiệu  \(\overline{...6}\)  để chỉ số có tận cùng là 6 nha)

Ta có  \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)

=>  \(3^{2^{1992}}=3^6=9\)  (mod 10).       (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)

Lại có  \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)

=>  \(2^{9^{1992}}=2^1=2\)  (mod 10)   (dòng này cũng là dấu đồng dư)

Do đó chữ số tận cùng của  \(3^{2^{1992}}-2^{9^{1992}}\)  là  9 - 2 = 7