K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

tìm 3 chữ số tận cùng c ủa \(\left(1-3+4+5\right)^{2015}=7^{2015}....\) là đc

25 tháng 10 2016

casio ?

21 tháng 10 2015

Áp dụng đẳng thức sau (có thể chứng minh bằng cách nhân tung rút gọn):

\(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+...+a^1+1\right)\)

Áp dụng với \(a=x;\text{ }a=\frac{1}{x}...\)

21 tháng 10 2015

nhờ thằng lắm chuyện nó giải giùm cho

NV
11 tháng 8 2020

\(=\left(3x^2+1\right)^{10}\left(x+1\right)^{10}\)

Do tất cả các số hạng chứa x trong khai triển \(\left(3x^2+1\right)^{10}\) đều mũ chẵn và số hạng tự do duy nhất bằng 1

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) bằng hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(x+1\right)^{10}\)

Theo khai triển nhị thức Newton thì hệ số này bằng 252

13 tháng 7 2019

Thay x=1/2 vào P(x): \(a+\frac{19}{16}=0\)\(\Leftrightarrow a=\frac{-19}{16}\)

Thay x=1/2 vào Q(x):\(b+\frac{9}{16}=0\Leftrightarrow b=\frac{-9}{16}\)

Cho Q(x)=x3+ax2+bx+cQ(x)=x3+ax2+bx+c. Biết Q(1)=−15,Q(2)=−15,Q(3)=−9Q(1)=−15,Q(2)=−15,Q(3)=−9 . Tìm số dư khi chia Q(x) cho (x-4)

bạn có thể giait giup mk ko

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y

NV
24 tháng 3 2022

Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)

\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)

\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)

Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)

\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)

\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)

24 tháng 3 2022

Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi  chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạundefined