Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0
Tới đây bạn tự làm nhé :)
Ta có f(x) = 2015/[x(x + 2)]
=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)
f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)
f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)
.........................................
=> S = f(1)+f(2)+f(3)+...+f(2015)
= (2015/2)(1 + 1/2 - 1/2016 - 1/2017)
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
Áp dụng đẳng thức sau (có thể chứng minh bằng cách nhân tung rút gọn):
\(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+...+a^1+1\right)\)
Áp dụng với \(a=x;\text{ }a=\frac{1}{x}...\)
nhờ thằng lắm chuyện nó giải giùm cho