Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm chữ số tận cùng, chúng ta chỉ quan tâm đến phần dư khi chia cho 10 của mỗi số hạng. Vì 3^31 và 7^100 đều lớn và tính toán chính xác số này có thể rất phức tạp, chúng ta có thể sử dụng tính chất của phép lũy thừa để đơn giản hóa bài toán.
Chúng ta biết rằng chữ số tận cùng của 3^31 sẽ là chữ số tận cùng của 3^1, 3^2, 3^3, ..., 3^30, 3^31. Tương tự, chữ số tận cùng của 7^100 sẽ là chữ số tận cùng của 7^1, 7^2, 7^3, ..., 7^99, 7^100.
Ta có thể lập bảng và tìm một mẫu lặp lại của chữ số tận cùng để giải quyết bài toán này:
3^1: 3 3^2: 9 3^3: 7 3^4: 1 3^5: 3 ...
7^1: 7 7^2: 9 7^3: 3 7^4: 1 7^5: 7 ...
Nhận thấy rằng chữ số tận cùng của các lũy thừa của 3 lặp lại theo chu kỳ 4 (3, 9, 7, 1) và chữ số tận cùng của các lũy thừa của 7 lặp lại theo chu kỳ 4 (7, 9, 3, 1).
Vì vậy, chúng ta chỉ cần tìm chữ số tận cùng của 3^31 và 7^100 trong chu kỳ này.
3^31 có chữ số tận cùng là chữ số tận cùng của 3^3 (7) vì 31 chia hết cho 4. 7^100 có chữ số tận cùng là chữ số tận cùng của 7^4 (1) vì 100 chia hết cho 4.
Tổng của chữ số tận cùng này là 7 + 1 = 8.
Vậy, chữ số tận cùng của 3^31 + 7^100 là 8.
Ta có : 2 ^ 4 = 16 có tận cùng là 6
Nên ( 2 ^ 4 ) ^ 13 = 2 ^ 52 có tận cùng là 6
=> 2 ^ 52 . 2 = 2 ^ 53 có tận cùng là 2
Ta có : 6 ^ n với n là số tụ nhiên khác 0 có tận cùng là 6
Nên : 6 ^ 70 có tận cùng là 6
Do đó : 2 ^ 53 . 6 ^ 70 có tận cùng là 2
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
Ta có : 2^1=2,2^2=4,2^3=8,2^4=16,2^5=32
Ta thấy khi dùng phép nâng lũy thừa cơ số 2 thì chữ số tận cùng sẽ theo chu kì 4 ( 2,4,8,6)
Mà : 2009( số mũ của 2^2009 mình ghi để bạn biết chứ bạn đừng ghi vào bài làm nhé !) : 2=1004(dư 1)
Suy ra : 2^2009 có chữ số tận cùng là 2
( Nếu bạn chia dư 3 thì chữ số tận cùng là 8 , chia dư 2 chữ số tận cùng là 4 và chia dư 0 chữ số tận cùng là6)
( Đối với các dạng bài này bạn cần tìm qui luật của chữ số tận cùng là theo chu kì mấy)
\(2^{2009}\)
\(=\left(2^4\right)^{502}\cdot2\)
\(=\left(...6\right)^{502}\cdot2\)
\(=\left(...6\right)\cdot2\)
\(=\left(...2\right)\)
Ta có:
21=2;22=4;23=8;24=16;25=32
Ta có cứ số mũ trừ đi có hiệu bằng 3 thì chữ số tận cùng lại lặp lại
(2009-1):4=502
Vậy số tận cùng là 2
Lãnh Hạ Thiên Băng trả lời sai rồi