K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(a!\)là tích các số tự nhiên từ 1 đến a.

a, \(11!=1.2.3.....11\)

Vì trong 11! chứa thừa số 2 và 5 nên 11! có chữ số tận cùng là 0.

\(17!=1.2.3.....17\)

17! cũng có chữ số tận cùng là 0.

b, Bạn cần nhớ: 10 nhân với số nào cũng có chữ số tận cùng là 0.

5 nhân với số lẻ nào cũng có chũ số tận cùng là 5

Tích \(2.4.6.....98\) vì chứa thừa số 10 nên tích này chữ số tận cùng là 0.

Tích \(1.3.5.....99\) vì chừa thừa số 5 mà ko chứa thừa số 2 nên tích này chữ số tận cùng là 5.

Vậy tổng \(\left(2.4.6.....98\right)+\left(1.3.5.....99\right)\) có chữ số tận cùng là: \(0+5=5\)

Chúc bạn học tốt.

11 tháng 11 2017

tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
         B = 3 – 32 + 33 – …   – 3100
Bài giải:
                 A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
             tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy     A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … –  3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy     B = ( 3- 3101) : 4

3 tháng 8 2022

sai

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

a) 72018 = 72016 . 72 = 74 . 504 . 49 = ................1 . 49 =................9

Chữ số tận cùng của số này là 9.

b) 20172018 = 20172016 . 20172 = 20174 . 504 . ...........................9 = ................1 . ..............9 =................9

Chữ số tận cùng của số này là 9.

9 tháng 10 2018

Mình mới lớp 7 chưa học đồng dư. Nên đọc lý thuyết có phần không hiểu lắm. Nên có gì sai sót trong sử dụng đồng dư mong bạn thông cảm! Cảm ơn bạn!

Ta có:

\(7^{2018}=7^{2016+2}=7^{4k+2}=2401^k.49\equiv49\left(mod9\right)\Rightarrow7^{2018}\) có tận cùng là 9

\(2017^{2018}=2017^{2016+2}=2017^{4k+2}=2017^{4k}.2017^2\equiv2017^2\left(mod9\right)\Rightarrow2017^{2018}\) có tận cùng là 9

22 tháng 9 2016

...1m = ...1 với mọi m

=> 112016 = ...1

chứ số tận cùng của 112016 là 1

26 tháng 9 2016

đơn giản vì nó ko phải số nguyên tố

14 tháng 7 2017

hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận

2 tháng 2 2016

link kết quả 22015 nè: http://goo.gl/b951WQ