Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
x2(x+3)+y2(y+5)-(x3+y3)=0
x3+3x2+y3+5y2-x3-y3=0
3x2+5y2=0
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}3x^2\ge0\\5y^2\ge0\end{cases}}\Rightarrow3x^2+5y^2\ge0}\)
Dấu "=" xảy ra khi 3x2=0 và 5y2=0
+)3x2=0=>x2=0=>x=0
+)5y2=0=>y2=0=>y=0
Vậy x=y=0
Sau khi rút gọn thì được kết quả
\(5y^2+3x^2=0\)
Vì các số hạng đều lớn hơn hoặc bằng 0 Nên buộc x=y=0 rồi
ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)
<=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)
<=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)
Vậy M=1
^_^
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=\left(x-1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0=>x=1\\\left(y+1\right)^2=0=>y=-1\end{cases}}\left(x,y\right)=\left(1,-1\right)\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
x2.(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
x3+3x2+y3+5y2-(x3+y3)=0
x3+3x2+y3+5y2-x3-y3=0
3x2+5y2=0
làm đến đây thì tạch!!!!!!!!!!!!
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
x2(x+3)+y2(y+5)-(x3+y3)=0
x3+3x2+y3+5y2-x3-y3=0
3x2+5y2=0
tịt luôn!!!!!!!