Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
Ta có
\(\left|2x-0,\left(24\right)\right|+\left|3y+0,1\left(5\right)\right|=0\)
\(\Rightarrow\left|2x-\frac{24}{99}\right|+\left|3y+0,\left(5\right)-0,4\right|=0\)
\(\Rightarrow\left|2x-\frac{8}{33}\right|+\left|3y+\frac{5}{9}-\frac{4}{5}\right|=0\)
Ta có
\(\begin{cases}\left|2x-\frac{8}{33}\right|\ge0\\\left|3y+\frac{5}{9}-\frac{2}{5}\right|\ge0\end{cases}\)
\(\Rightarrow\begin{cases}2x-\frac{8}{33}=0\\3y+\frac{5}{9}-\frac{2}{5}=0\end{cases}\)
\(\Rightarrow\begin{cases}2x=\frac{8}{33}\\3y=\frac{7}{45}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{4}{33}\\y=\frac{7}{135}\end{cases}\)
Vậy \(\left(x;y\right)=\left(\frac{4}{45};\frac{7}{135}\right)\)
bn ơi đề là |2x-0,(24) | + |3y + 0,1(55) | =0 chứ ko phải là 0,1(5) đâu nha sửa giúp m vs
Bài 1:
a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)
Dấu '=' xảy ra khi x=4/9
b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)
Dấu '=' xảy ra khi x=-11/9
Bài 2:
=>2x-8/33=0 và 3y+7/45=0
=>2x=8/33 và 3y=-7/45
=>x=8/66=4/33 và y=-7/135
Ta có \(2x+y-xy=5\Leftrightarrow xy-2x-y+5=0\Leftrightarrow x\left(y-2\right)-\left(y-2\right)+3=0\Leftrightarrow\left(x-1\right)\left(y-2\right)=-3\).
Ta có bảng:
x - 1 | 1 | 3 | -1 | -3 |
y - 2 | -3 | -1 | 3 | 1 |
x | 2 | 4 | 0 | -2 |
y | -1 | 1 | 5 | 3 |