Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B+C=\(X^2\)YZ+X\(Y^2\)Z+XY\(Z^2\)=XXYZ+XYYZ+XYZZ=(X+Y+Z)XYZ
MÀ XYZ=1=>A+B+C=(X+Y+Z)*1=X+Y+Z
a.
Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)
suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.
- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.
- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.
- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).
- Suy ra AK = KI..
b.
Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.
BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.
Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.
bài 2b.
\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)
Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)
Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)
Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)
Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)
\(\Rightarrow2019⋮2\)(vô lý)
Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
Bài 1 : Giải
Lưu ý : b2 = a.c ; c2 = b.d
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)
Vậy M = 1/2
Bài 2 :
Ta có : x - y cùng tính chẵn lẻ với x - y
: y - 2 cùng tính chẵn lẻ với y - 2
: 2 - x cùng tính chẵn lẻ với 2-x
=> | x - y | + | y - 2 | + | 2 - x | cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x )
= x -y + y - 2 + 2 - x = 0 là 1 số chẵn
=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn
=> không có x ; y ; z thỏa mãn điều kiện trên
ta có A+B+C=x2yz+xy2z+xyz2
=x(xyz)+y(xyz)+z(xyz)
=x.1+y.1+z.1
=x+y+z(dpcm)
\(A=x^2yz=x.\left(xyz\right)=x.1=x\)
\(B=xy^2z=y.\left(xyz\right)=y.1=y\)
\(C=xyz^2=z.\left(xyz\right)=z.1=z\)
\(\Rightarrow A+B+C=x+y+z\)