K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

Theo đầu bài ta có:
 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Từ đó suy ra:
\(xy+yz+xz=104\)
\(\Rightarrow2k\cdot3k+3k\cdot4k+2k\cdot4k=104\)
\(\Rightarrow6k^2+12k^2+8k^2=104\)
\(\Rightarrow26k^2=104\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\)
 \(\Rightarrow\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)

29 tháng 7 2018

Đặt x/2=y/3=z/4=k => x=2k,y=3k,z=4k

Ta có: xy+yz+xz=2k.3k+3k.4k+4k.2k=6k2+12k2+8k2=26k2=104

=>k2=4 =>k=2 hoặc k=-2

Với k=2 => x=4,y=6,z=8

Với k=-2 =>x=-4,y=-6,z=-8

31 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{4}=\frac{y-2}{3}=\frac{2x-2+5y-10}{2.4+5.3}=\frac{81-12}{23}=\frac{69}{23}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{4}=2\Rightarrow x=9\\\frac{y-2}{3}=2\Rightarrow y=8\end{cases}}\)

Vậy ... 

31 tháng 10 2021

cậu 1 mik chưa nghĩ ra , xin lỗi bạn nhiều nha 

câu 2 :

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k,y=3k;z=4k\) 

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

https://lazi.vn/users/dang_ky?u=kieu-anh.pham4

8 tháng 8 2016

Ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) ( Do đó mà \(x;y;z\)cùng dấu )

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}=\frac{xy+yz+xz}{6+12+8}=\frac{104}{26}=4\)

\(\frac{x^2}{4}=4\Rightarrow x\in\left\{-4;4\right\}\)

\(\frac{y^2}{9}=4\Rightarrow y\in\left\{-6;6\right\}\)

\(\frac{z^2}{16}=4\Rightarrow x\in\left\{-8;8\right\}\)

Mà x ; y ; z cùng dấu nên \(\left(x;y;z\right)\in\left\{\left(-4;-6;-8\right);\left(4;6;8\right)\right\}\)

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.