Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)
\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)
\(y=12\cdot7=84\)
Vậy x = 30 ; y = 84
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot3=6\)
\(y=2\cdot2=4\)
Vậy x = 6 ; y = 4
c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot2=4\)
\(y=3\cdot2=6\)
\(z=4\cdot2=8\)
Vậy x = 4 ; y = 6 ; z = 8
d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)
\(\Rightarrow x=-3\cdot2=-6\)
\(y=-3\cdot3=-9\)
\(z=-3\cdot4=-12\)
Vậy \(x=-4;y=-6;z=-8\)
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
phần a
vì x/2= y/3
y/5= z/4
=>x/2 nhân 1.5 = y/3 nhân 1/5
=> y/5 nhân 1/3 = z/4 nhân 1/3
=>x/10 = y/15 (1)
=>y/15 = z/12 (2)
Từ (1) , (2) ta có :
x/10 = y/15 = z/12
áp dụng t/c......
=>x/10 = y/15 = z/12
=>x+y+z/10+15+12
=> -49/37
b lm tiếp bc tiếp theo nhé✔
Vì mk cmt đầu tiên lên b tích dùm m☢
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!
Áp dụng t/c DTSBN ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)
=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)
=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)
=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)
=> x+y+z = 1/2 (4)
Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)
=> 2x = 1/2-x+1
=> 3x = 3/2 => x=1/2
Ta có: Từ (2) => 2y = x+z+1
=> 2y + y = x+y+z+1
=> 3y = 1/2+1 (theo 4) => 3y=3/2
=> y=1/2
Ta có : Từ (4) => x+y+z=1/2
=>1/2 + 1/2 +z = 1/2
=> z=-1/2
Vậy ( x;y;z)=(1/2;1/2;-1/2)
Câu 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{8}=1\)
Do đó: x=2; y=4; z=6
\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)