K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

23 tháng 2 2020

Em có cách giải khác nhưng không chắc lắm!

Nếu \(c\ge\frac{13}{3}\) thì: \(60=5a^2+2abc+4b^2+3c^2\ge5a^2+\frac{26}{3}ab+4b^2+3c^2\)

\(=\frac{1}{45}\left(15a+13b\right)^2+\frac{11b^2}{45}+3c^2\)

\(>\frac{\left(15a+13b\right)^2}{45}+3c^2=\frac{\left(15a+13b\right)^2+135c^2}{45}\)

\(>\frac{\left(13a+13b\right)^2+\left(11c\right)^2}{45}\ge\frac{\left(13a+13b+11c\right)^2}{45}>\frac{121\left(a+b+c\right)^2}{45}\)

\(\Rightarrow A=a+b+c< \sqrt{\frac{60.45}{121}}< 4,8< 6\)

Nếu \(0< c< \frac{13}{3}\):

\(22\left(6-A\right)=22\left[6-\left(a+b+c\right)\right]\)

\(=\frac{1}{5}\left[\left(5a+bc-11\right)^2+\frac{5\left(c-3\right)^2\left(c+3\right)\left(13-3c\right)}{20-c^2}+\frac{(bc^2 - 20b - 11c + 55)^2}{20-c^2}\right]\ge0\)

(chú ý phân tích chỗ này chỉ đúng với a, b, c thỏa mãn giả thiết)

Do đó \(A\le6\). Tóm lại, trong mọi trường hợp của c, A luôn \(\le6\).

Vậy Max A = 6 khi \(a=1;b=2;c=3\)

21 tháng 2 2020

Trong đề thi vào lớp 10 tỉnh Thanh Hóa bài này có đáp án rồi. 

Từ phương trình :\(5a^2+2abc+4b^2+3c^2=60\)(1) và a, b , c là các số dương

=> \(4b^2< 60;3c^2< 60\)

=> \(\left(15-b^2\right)>0;\left(20-c^2\right)>0\)

(1) <=> \(5a^2+2bc.a+4b^2+3c^2-60=0\)

Xem đẳng thức trên phương trình bậc 2  có tham số là b và c ẩn là a.

Khi đó: \(\Delta'=\left(bc\right)^2-5\left(4b^2+3c^2-60\right)\)

\(=\left[\left(bc\right)^2-20b^2\right]-\left(15c^2-300\right)\)

\(=b^2\left(c^2-20\right)-15\left(c^2-20\right)=\left(b^2-15\right)\left(c^2-20\right)>0\)( theo trên )

=> phương trình (1) có hai nghiệm phân biệt:

\(a=\frac{-bc\pm\sqrt{\left(b^2-15\right)\left(c^2-20\right)}}{5}\)

Xét nghiệm  \(a=\frac{-bc+\sqrt{\left(b^2-15\right)\left(c^2-20\right)}}{5}\)

\(\le\frac{-bc+\frac{1}{2}\left(15-b^2+20-c^2\right)}{5}=\frac{-\left(b+c\right)^2+35}{10}\)

=> \(a+b+c=\frac{-\left(b+c\right)^2+10\left(b+c\right)+35}{10}\)

\(=\frac{-\left(b+c-5\right)+60}{10}\le\frac{60}{10}=6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}b+c-5=0\\b^2-15=c^2-20\\a+b+c=6\end{cases}}\)<=> \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\) thử lại thỏa mãn ( 1)

Vậy: min A = 6 tại a = 1; b = 2; c = 3

19 tháng 11 2017

Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\)      (*)

\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\)     \(\left(1\right)\)

Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)

\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)

\(\Rightarrow1-x⋮d\)

\(\Rightarrow1-x+x+1⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ

\(\Rightarrow d=\pm1\)

\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau

Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương

Giả sử: + \(x^2+1=m^2\)

\(\Rightarrow m^2-x^2=1\)

\(\Rightarrow x=0\)(bạn tự tính)

    +\(x+1=n^2\)

\(\Rightarrow x=0\)(bạn tự tính)

Thay x=0 vào phương trình (*)=> y=-1;0

Vậy.......

1 tháng 3 2017

ko biet

8 tháng 12 2017

mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`

8 tháng 12 2017

x=5 y=15

29 tháng 4 2017

x^2+y^2=16+xy=>2x^2+2y^2=32+2xy

=>x^2+y^2=32+2xy-x^2-y^2=32-(x^2-2xy+y^2)=32-(x-y)^2 </ 32 với mọi x,y

maxP=32