Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu x đều lớn hơn 1 ; y lớn hơn hoặc = 0; z\(\ge\) 1:
Nhận xét: 2014x chia hết cho 2;
2013y không chia hết cho 2
2012z chia hết cho 2
=> 2013y + 2012z không chia hết cho 2
=> 2014x = 2013y + 2012z không xảy ra
+) Nếu x = 1 => 2014 = 2013y + 2012z => chỉ có y = 1; z =0 thoả mãn
+) Nếu x = 0 => 1 = 2013y + 2012z => không có y,z thoả mãn vì 2013y + 2012z nhỏ nhất = 1 + 1 = 2
Vậy chỉ có x = 1; y = 1; z = 0 thoả mãn
xét y=0 phương trình ko có nghiệm nguyên
xét x= 0 phương trình ko có nghiệm nguyên
xét x;y;z lớn hơn hoặc bằng 1 thì
2012^z chia hết cho 2
2013^y ko chia hết cho 2
=> 2012^z + 2013^y ko chia hết cho 2
mà 2014^x chia hết cho 2
=> vô lý
vậy phương trình có nghiệm (x;y;z)=(0;1;1)
\(2016^z+2017^y=2018^x\)
\(\text{TH1 : z = 0}\)
\(\Leftrightarrow2016^0+2017^y=2018^x\)
\(\Leftrightarrow1+2017^y=2018^x\)
\(\Leftrightarrow y=1;x=1\)
\(\text{TH2 : y = 0}\)
\(\Leftrightarrow2016^z+2017^0=2018^x\)
\(\Leftrightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)
\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Leftrightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)
Gợi ý: 2017y là số lẻ
2016z và 2018x là số chẵn trừ khi x=0 ; z=0
Mà 2018x= 2017y + 2016z
=> y=0
=> 2018x=2016z+1
Mặt khác 2018x >= 2016z
Dấu bằng xảy ra <=> x=0;z=0
Thử lại: 1 = 2 vô lí
Vậy không có x;y;z; là số tự nhiên thỏa mãn
làm ơn giúp mình với mình cần gấp lắm, ai làm sớm nhất, hay nhất mình k cho
Vì 2016^x luôn luôn có tận cùng=6
=>2015^y+2014^z cũng có tận cùng là 6(vì 2 vế = nhau)
Mà 2015^y luôn luôn có tận cùng là 5
=>2014^z phải có tận cùng là 1(để 5+1 có tận cùng là 6)
Mà 2014 là số chẵn=>2014^z chỉ lẻ khi z=0
(bạn ơi đề bài sai chứ chỉ làm đc đến đây thôi bạn thông cảm,tk cho mk)