K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên  thì 2n+3 \(⋮\) 4n+1 

Ta có   2n+3 \(⋮\)4n+1

 =>      4n+6 \(⋮\)4n+1

=> (4n+1)+5 \(⋮\)4n+1

=>            5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }

Ta có bảng :

4n+1-1-515
4n-2-604
nkhông cókhông có0            1          

Mà n \(\in\)N

+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)

+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )

Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

b, Gọi d \(\in\)UC(2n+3;4n+1)

Ta có  2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d

          4n+1 \(⋮\)d

Suy ra 2(2n+3) - (4n+1) \(⋮\)d

              4n+6 - 4n+1   \(⋮\)d

                            5     \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }

+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5

                            (5n+5).(n+4) \(⋮\)5

                                       n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)

Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5

Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản 

24 tháng 7 2017

1, A=\(\frac{2n+3}{\text{4n + 1}}\)

A=\(\frac{4n+6}{\text{4n + 1}}\)

A=\(\frac{4n+1+5}{\text{4n + 1}}\)

A=1+\(\frac{5}{\text{4n + 1}}\)

Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.

Vậy n\(\in\){0;1} thì A là số tự nhiên

9 tháng 8 2015

\(\frac{n^3+2n^2+1}{n^2-1}\)

Ta có:n3+2n2+1=(n2-1)(n+2)-(n-3)

=>n3+2n2+1 chia hết cho n2+1

<=>dư = 0 hay n-3=0<=>n=3

 

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

23 tháng 9 2015

Để A nguyên

=> n+3 chia hết cho 2n-2

=> 2n+6 chia hết cho 2n-2

=> 2n-2+8 chia hết cho 2n-2

Vì 2n-2 chia hết cho 2n-2

=> 8 chia hết cho 2n-2

=> 2n-2 thuộc Ư(8)

Vì 2n-2 chẵn 

=> 2n-2 thuộc {-8; -4; -2; 2; 4; 8}

2n-2n
-8-3 (loại)
-4-1 (loại)
-2
2
4
8         

+ Nếu n = 0

=> A = \(\frac{0+3}{2.0-2}=\frac{3}{-2}\)(loại)

+ Nếu n = 2

=> A = \(\frac{2+3}{2.2-2}=\frac{5}{2}\) (loại)

+ Nếu n = 3

=> A = \(\frac{3+3}{2.3-2}=\frac{6}{4}=\frac{3}{2}\) (loại)

+ Nếu n = 5

=> A = \(\frac{5+3}{5.2-2}=\frac{8}{8}=1\)(TM)

KL: n = 5

12 tháng 2 2016

ai làm giúp mìnk vs!!!

12 tháng 2 2016

help me!!!!!!!!!

30 tháng 3 2017

Số n là :

1 + 0 = 1

Đáp số : 1

2 tháng 10 2016

n = 1 và n =2