Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải nè:
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc])))
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath
Bài làm đúng.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)
Đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\left(x;y;z>0\right)\). Thay vào và quy đồng từng đẳng thức ta được
xy2+y=xyz+x
yz2+z=xyz+y
x2z+x=xyz+z
cộng 3 đẳng thức trên ta được 3xyz = xy2+yz2+zx2 \(\ge3\sqrt[3]{xy^2.yz^2.zx^2}=3xyz\)
dấu '=' khi \(xy^2=yz^2=zx^2< =>x=y=z\) hay a=b=c
Vậy không nhất thiết abc=1
Bài 5 nha:
\(a+\frac{1}{b}=b+\frac{1}{c}\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}.\)
\(\Leftrightarrow\left(a-b\right)=\frac{b-c}{bc}_{\left(1\right)}\)
\(a+\frac{1}{b}=c+\frac{1}{a}\Leftrightarrow a-c=\frac{1}{a}-\frac{1}{b}\)
\(\Leftrightarrow\left(a-c\right)=\frac{b-a}{ab}_{\left(2\right)}\)
\(c+\frac{1}{a}=b+\frac{1}{c}\Leftrightarrow c-b=\frac{1}{c}-\frac{1}{a}\)
\(\Leftrightarrow\left(c-b\right)=\frac{a-c}{ac}_{\left(3\right)}\)
Nhân từng vế của (1) ; (2) và (3) , ta được :
\(\left(a-b\right)\left(a-c\right)\left(c-b\right)=\frac{\left(b-c\right)\left(b-a\right)\left(a-c\right)}{\left(abc\right)^2}\)
\(=\frac{\left(c-b\right)\left(a-b\right)\left(a-c\right)}{\left(abc\right)^2}\)
\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow abc=1\)hoặc \(abc=\left(-1\right)\)
Bài 3:
Ta có : \(x^2+y^2+z^2=1\Leftrightarrow\left(x+y+z\right)^2\)
\(=1+2\left(xy+yz+zx\right)\Leftrightarrow1=1+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx=0\)(*)
áp dụng kết quả sau :
Ta có : \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Thấy vậy : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\left(ab+bc+ca\right)\right)-3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\left(a+b+c\right)^33\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
áp dụng vào bài toán, ta có :
\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=\frac{1}{2}\left(x+y+z\right)\left(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\right)\)
\(\Leftrightarrow1-3xyz=\frac{1}{2}\times1\times2=1\Leftrightarrow xyz=0\)(**)
Mà \(x+y+z=1\)(***)
\(\Leftrightarrow\)x ; y ; z là 3 nghiệm của pt bậc 3 sau : \(U^3-U^2=0\)
\(\Leftrightarrow U=0\)hoặc \(U=1\)
=> 1 trong 3 phần tử x ; y ; z =1 ; 2 phần tử còn lại sẽ = 0
Do đó \(x+y^2+z^3=1\)
=> điều phải chứng minh.