Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)
c) \(\left(2x-3\right).\left(6-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{2};3\right\}\)
e) \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(\Leftrightarrow2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}:2=\frac{7}{4}.\frac{1}{2}=\frac{7}{8}\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\left(-\frac{7}{8}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)
Mấy bài này ko quá khó, tải MathPhoto trong đt về nó tự lm
Ta có :
\(\frac{-x}{3}=\frac{27}{4}\) \(\Rightarrow\) \(x=\frac{-81}{4}\)
\(\frac{3}{y^2}=\frac{27}{4}\) \(\Rightarrow\) \(y=\sqrt{\frac{4}{9}}=\frac{2}{3}\)
\(\frac{\left(z+3\right)^3}{-4}=\frac{27}{4}\) \(\Rightarrow\) \(z=-3\)
\(\frac{\left|t\right|-2}{8}=\frac{27}{4}\) \(\Rightarrow\) \(\orbr{\begin{cases}t=56\\t=-56\end{cases}}\)
Vậy ...
Cảm ơn Phùng MInh Quân nha!!!