K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

để mk lật sách xem bài đẳng thức thử chứ chưa hok

duyệt đi

24 tháng 2 2016

2.99076872 

mình làm trước nha

29 tháng 4 2017

Từ 2x2 + 3y2 =77.Suy ra \(0\le3y^2\le77\Rightarrow0\le y^2\le25\)kết hợp với 2x2 là số chẵn => 3y2 là số lẻ =>y2 là số lẻ => y \(\in\){1 ;9 ; 25} 

+Với y2 = 1 => 2x2 = 77 - 3 = 74 <=> x2 = 37 (không thỏa mãn)

+Với y2 = 9 => 2x2 = 77 - 27 = 50 <=> x2 = 25 <=> x = 5 hoặc x = -5 

+Với y2 = 25 => 2x2 = 77 - 75 = 2 <=> x2 = 1 <=> x = 1 hoặc x = -1 

Vậy ta có các trường hợp sau:

x1-11-15-55-5
y55-5-533-3-3
29 tháng 4 2017

ta có: \(2x^2+3y^2=44+33\)

=>\(2x^2+3y^2=2.22+3.11\)

=>\(x^2=22\Rightarrow\sqrt{22}\)

và \(y=11\Rightarrow\sqrt{11}\)

đúng 100%

đúng 100%

đúng 100%

18 tháng 8 2016

Từ 2x2+3y2=77\(\Rightarrow0\le3y^2\le77\)

\(\Rightarrow0\le y^2\le25\) kết hợp với 2x2 là số chẵn

=>3y2 là số lẻ =>y2 là số lẻ =>y2\(\in\){1;9;25}

  • Với y2=1 =>2x2=77-3=74 =>x237 (loại)
  • Với y2=9 =>2x2=27=50 =>x2=25 =>x=5 hoặc -5 (thỏa mãn)
  • Với y2=25 =>2x2=77-75=2 =>x2=1 =>x=1 hoặc -1 (thỏa mãn)
18 tháng 8 2016

Tại sao từ đầu bài lại suy ra được 0  3y77 vậy cậu ? 

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

6 tháng 4 2017

(x,y) = (-5,3) ; (5,3) ; (-1,5) ; (1,5)

17 tháng 8 2019

* Với \(y^2=9\)thì \(x^2=25\Rightarrow x=\pm5\left(TM\right)\)\(2x^2+3y^2=77\)

\(\Leftrightarrow2x^2+3\left(y^2-1\right)=74\)

Vì 74 chẵn, \(2x^2\)chẵn nên \(3\left(y^2-1\right)\)chẵn

\(\Leftrightarrow y^2-1\)chẵn\(\Leftrightarrow y^2\)lẻ

Mà \(3y^2\le77\Rightarrow y^2\le25\)\(\Rightarrow y^2\in\left\{1;9;25\right\}\)

* Với \(y^2=1\)thì \(x^2=37\left(L\right)\)

* Với \(y^2=9\)thì \(x^2=25\Rightarrow x=\pm5\left(TM\right)\)

* Với \(y^2=25\)thì \(x^2=1\Rightarrow x=\pm1\left(TM\right)\)

Lập bảng:

\(x\)\(1\)\(-1\)\(1\)\(-1\)\(5\)\(-5\)\(5\)\(-5\)
\(y\)\(5\)\(-5\)\(-5\)\(5\)\(3\)\(-3\)\(-3\)\(3\)