Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé
Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 \Rightarrow vế trái chia 5 dư 3 (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) và (2) giải ra ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài
Ta có :
\(5^{2p}=25^p\equiv1\left(mod3\right)\)
\(2013\equiv0\left(mod3\right)\)
\(\Rightarrow5^{2p}+2013\equiv1\left(mod3\right)\)\(\left(1\right)\)
Mà :
\(\left(5^{2p}\right)^2\equiv1\left(mod3\right)\)do \(5^{2p}\equiv1\left(mod3\right)\)
\(q^2\equiv1\left(mod3\right)\)(vì \(q\)là SNT nên \(q\)không chia hết cho 3 và \(q^2\)là số chính phương nên chia 3 chỉ có thể dư 1 hoặc 0)
\(\Rightarrow\left(5^{2p}\right)^2+q^2\equiv2\left(mod3\right)\)\(\left(2\right)\)
Mà : \(5^{2p}+2013=\left(5^{2p}\right)^2+q^2\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow p\in\varnothing;q\in\varnothing\)
Vậy \(\Rightarrow p\in\varnothing;q\in\varnothing\)
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé
1.
PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$
$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$
$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1,2$
Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)
$\Rightarrow d=1$
Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
$y^2+1, y+1$ cũng là scp
Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$
$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$
$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$
2.
$x^4+2x^2=y^3$
$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$
Đặt $d=(y+1, y^2-y+1)$
$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$
$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$
$\Rightarrow 3y\vdots d$
Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,
$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)
Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$
$\Rightarrow y\vdots d$
Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
$y+1, y^2-y+1$ cũng là scp
Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$
Có:
$y^2-y+1=b^2$
$\Leftrightarrow (2y-1)^2+3=(2b)^2$
$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$
Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$
Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.
Không tồn tại bạn ak vì:
VT : 5 dư 3 => VP : 5 dư 3 => y2 : 5 dư 3 => không tồn tại y.