K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Với \(a,b,c\in Z\)

Trong \(a=2^b\cdot c\) có thừa số \(2^b>0\forall b\in Z\) nên \(a\) và \(c\) phải cùng dấu

\(TH1\): Với \(a,c\le-1\) (âm):

Ta có: \(9^a\notin Z\) (vì có số mũ âm)

\(\Rightarrow9^a+952\notin Z\) (vì \(952\in Z\)), mà \(\left(b+41\right)^2\in Z\) (vì \(b\in Z,41\in Z\))

\(\Rightarrow9^a+952\ne\left(b+41\right)^2\)

\(TH2\): Với \(a,c\ge0\) (không âm):

(I) Với \(b\ge1\):

Ta có: \(2^b⋮2\) (vì \(b\ge1\)\(\Rightarrow a=2^b\cdot c⋮2\) \(\Rightarrow\) \(a\) chẵn

\(\Rightarrow9^a\) có số mũ \(a\) chẵn, thì \(9^a\) có chữ số tận cùng là 1

\(\Rightarrow9^a+952\) có chữ số tận cùng là 1 + 2 = 3

Ta lại có: \(\left(b+41\right)^2\) không bao giờ có chữ số tận cùng là 3 (vì số chính phương không bao giờ có chữ số tận cùng là 3)

Từ đó, \(9a+952\ne\left(b+41\right)^2\)

(II) Với \(b\le0\):

Ta có: \(a=2^b\cdot c\Leftrightarrow c=\frac{a}{2^b}\)

\(9^a>0\forall a\in Z\Rightarrow9^a+952>0\forall a\in Z\)

Nếu \(a\) là số chẵn thì không thể tìm được \(b,c\in Z\) (đã chứng minh trên).

Với \(a\) lẻ thì \(9^a\) thì có chữ số tận cùng là 9 \(\Rightarrow9^a+952\) có chữ số tận cùng là 1.

\(9^a+952=\left(b+41\right)^2\Leftrightarrow b+41=\pm\sqrt{9^a+952}\)

Vì \(b+41\in Z\) (chứng minh trên), nên \(9^a+952\in Z\Rightarrow9^a+952\) là số chính phương, mà \(9^a+952\)lẻ.

\(\Rightarrow9^a+952\) chia 8 dư 1 \(\Rightarrow9^a\) chia 8 dư 1 (vì \(952⋮8\))

Chỉ tìm được \(a=1,a=3\) thoả mãn điều kiện trên (\(9^1=9\) chia 8 dư 1, \(9^3=729\) chia 8 dư 1).

- Thay \(a=1\), ta có: \(b+41=\pm\sqrt{9+952}=\pm\sqrt{961}=\pm31\Leftrightarrow b\in\left\{-72;-10\right\}\)

\(c\in\left\{\frac{1}{2^{-72}};\frac{1}{2^{-10}}\right\}=\left\{2^{72};2^{10}\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(1;-72;2^{72}\right),\left(1;-10;2^{10}\right)\).

- Thay \(a=3\), ta có: \(b+41=\pm\sqrt{9^3+952}=\pm41\Leftrightarrow b\in\left\{-82;0\right\}\)

\(c\in\left\{\frac{3}{2^{-82}};\frac{3}{2^0}\right\}=\left\{2^{82}\cdot3;3\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(3;-82;2^{82}\cdot3\right),\left(3;0;3\right)\).

Nếu đề bài cho là \(b\) không âm thì \(a=3,b=0,c=3\) là các số cần tìm.

P/S: Nếu mà đề bài cho \(b\) không âm thì không cần phải trình bày dài dòng như trên.

\(b\le0\) (từ \(TH2\) phần II) và \(b\ge0\) (\(b\) không âm), tức là \(b=0\) (\(a=2^0\cdot c=1\cdot c=c\)), rồi không cần trình bày dài dòng như trên, mà chỉ cần thay \(b=0\) vào phương trình \(9^a+952=\left(b+41\right)^2\) là tìm được \(a=c=3\) ngay.

19 tháng 11 2018

1 .x+5  và 2y+1 là Ư(42) lập bảng tính

2.vd tc chia hết 

a: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{13}{15-2}\cdot\dfrac{-15}{40}=\dfrac{-3}{8}\)

b: \(=\dfrac{18\left(34-124\right)}{36\left(-17-13\right)}=\dfrac{1}{2}\cdot\dfrac{-90}{-30}=\dfrac{3}{2}\)

c: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{\dfrac{-1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)

\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}\)

\(=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

18 tháng 3 2017

a)

\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

18 tháng 3 2017

ai bít câu b.c ko

13 tháng 2 2018

\(\left(x+1\right)\left(y-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy x = - 1 ; y = 2