K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Với \(a,b,c\in Z\)

Trong \(a=2^b\cdot c\) có thừa số \(2^b>0\forall b\in Z\) nên \(a\) và \(c\) phải cùng dấu

\(TH1\): Với \(a,c\le-1\) (âm):

Ta có: \(9^a\notin Z\) (vì có số mũ âm)

\(\Rightarrow9^a+952\notin Z\) (vì \(952\in Z\)), mà \(\left(b+41\right)^2\in Z\) (vì \(b\in Z,41\in Z\))

\(\Rightarrow9^a+952\ne\left(b+41\right)^2\)

\(TH2\): Với \(a,c\ge0\) (không âm):

(I) Với \(b\ge1\):

Ta có: \(2^b⋮2\) (vì \(b\ge1\)\(\Rightarrow a=2^b\cdot c⋮2\) \(\Rightarrow\) \(a\) chẵn

\(\Rightarrow9^a\) có số mũ \(a\) chẵn, thì \(9^a\) có chữ số tận cùng là 1

\(\Rightarrow9^a+952\) có chữ số tận cùng là 1 + 2 = 3

Ta lại có: \(\left(b+41\right)^2\) không bao giờ có chữ số tận cùng là 3 (vì số chính phương không bao giờ có chữ số tận cùng là 3)

Từ đó, \(9a+952\ne\left(b+41\right)^2\)

(II) Với \(b\le0\):

Ta có: \(a=2^b\cdot c\Leftrightarrow c=\frac{a}{2^b}\)

\(9^a>0\forall a\in Z\Rightarrow9^a+952>0\forall a\in Z\)

Nếu \(a\) là số chẵn thì không thể tìm được \(b,c\in Z\) (đã chứng minh trên).

Với \(a\) lẻ thì \(9^a\) thì có chữ số tận cùng là 9 \(\Rightarrow9^a+952\) có chữ số tận cùng là 1.

\(9^a+952=\left(b+41\right)^2\Leftrightarrow b+41=\pm\sqrt{9^a+952}\)

Vì \(b+41\in Z\) (chứng minh trên), nên \(9^a+952\in Z\Rightarrow9^a+952\) là số chính phương, mà \(9^a+952\)lẻ.

\(\Rightarrow9^a+952\) chia 8 dư 1 \(\Rightarrow9^a\) chia 8 dư 1 (vì \(952⋮8\))

Chỉ tìm được \(a=1,a=3\) thoả mãn điều kiện trên (\(9^1=9\) chia 8 dư 1, \(9^3=729\) chia 8 dư 1).

- Thay \(a=1\), ta có: \(b+41=\pm\sqrt{9+952}=\pm\sqrt{961}=\pm31\Leftrightarrow b\in\left\{-72;-10\right\}\)

\(c\in\left\{\frac{1}{2^{-72}};\frac{1}{2^{-10}}\right\}=\left\{2^{72};2^{10}\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(1;-72;2^{72}\right),\left(1;-10;2^{10}\right)\).

- Thay \(a=3\), ta có: \(b+41=\pm\sqrt{9^3+952}=\pm41\Leftrightarrow b\in\left\{-82;0\right\}\)

\(c\in\left\{\frac{3}{2^{-82}};\frac{3}{2^0}\right\}=\left\{2^{82}\cdot3;3\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(3;-82;2^{82}\cdot3\right),\left(3;0;3\right)\).

Nếu đề bài cho là \(b\) không âm thì \(a=3,b=0,c=3\) là các số cần tìm.

P/S: Nếu mà đề bài cho \(b\) không âm thì không cần phải trình bày dài dòng như trên.

\(b\le0\) (từ \(TH2\) phần II) và \(b\ge0\) (\(b\) không âm), tức là \(b=0\) (\(a=2^0\cdot c=1\cdot c=c\)), rồi không cần trình bày dài dòng như trên, mà chỉ cần thay \(b=0\) vào phương trình \(9^a+952=\left(b+41\right)^2\) là tìm được \(a=c=3\) ngay.

18 tháng 1 2018

Ta có: \(a=-\frac{b}{28}\). Mà b là số nguyên âm => a là số dương

Và : \(c=\frac{d}{35}\). Mà d là số nguyên âm => c là số âm

=> a > c

16 tháng 12 2016

\(2.\left|x\right|-5=3\)

\(\Rightarrow2.\left|x\right|=3+5=8\)

\(\Rightarrow\left|x\right|=8:2=4\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\x=4\end{array}\right.\)

Vậy : \(\left[\begin{array}{nghiempt}x=-4\\x=4\end{array}\right.\)

20 tháng 12 2016

thank

 

 

25 tháng 7 2015

(a + 3c) + (a+ 2b) = 8 + 9 = 17

=> 2a + 2b + 3c = 17 => 2.(a+b+ c) + c = 17

a + b + c lớn nhất => 2.(a+b+c) lớn nhất => c nhỏ nhất ; c không âm => c = 0

=> a = 8 => 8 + 2b = 9 => b = 1/2

Vậy a = 8; b = 1/2; c = 0 thì...

30 tháng 7 2017

Ta có: 

a+2c+a+3b=8+9

=> 2a+3b+2c=17

=> 2(a+b+c)+c=17

Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất

=> c nhỏ nhất không âm.

=> a=8

b=1/2

c= 0

Vậy a=8

8 tháng 12 2024

😁😁😁😁

10 tháng 12 2014

1) ta có 1 = -1.(-1-0)

=> a là số nguyên dương vì = 1

=> b là số nguyên âm vì = -1

=> c là số không vì = 0