Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)
<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(
Từ giả thiết ta có:
\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)
Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)
Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
Ơ....hình như em tính sai chỗ nào rồi:(
Nguyễn Khang
\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử )
\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)