Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{6}-\dfrac{5}{2y+1}=\dfrac{2}{3}\)
\(\dfrac{x}{6}-\dfrac{5.2}{2y.2+1.2}=\dfrac{4}{6}\)(vì 2y + 1 là số lẻ)
\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)
Để \(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)thì y = 1 để cùng mẫu số
Khi đó ta có\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{4+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{6}=\dfrac{4}{6}\)
Vì 4+10 = 14 => x = 14
Vậy y = 1; x = 14
Sửa đề: Tìm cac số nguyên dương x,y biết \(\left(x+y\right)^5\le100x+3\)
Vì x,y \(\in\) N* nên \(\left(x+y\right)^5\le100x+3< 100x+100y=100\left(x+y\right)\)
\(\Rightarrow\left(x+y\right)^4\le100< 4^4\)
=> x + y < 4
Mà \(x+y\ge2\) (vì x,y \(\in\) N*)
\(\Rightarrow\orbr{\begin{cases}x+y=2\\x+y=3\end{cases}}\)
+) x + y = 2 => x = y = 1 (thỏa mãn)
+) x + y = 3 => \(\orbr{\begin{cases}x=1,y=2\left(tm\right)\\x=2,y=1\left(ktm\right)\end{cases}}\)
Vậy x=1,y=1 hoặc x=1,y=2
Ý của bạn là:\(\frac{1}{x}+\frac{y}{3}=\frac{5}{6}\)đúng không?
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)
=> \(\frac{1}{x}=\frac{1-2y}{3}\)
=> x(1 - 2y) = 3 = 1 . 3 = 3.1 = (-1) . (-3) = (-3) . (-1)
Lập bảng :
1 - 2y | 1 | -1 | 3 | -3 |
x | 3 | -3 | 1 | -1 |
y | 0 | 1 | -1 | 2 |
Vậy ...
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3}{3x}+\frac{xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3+xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow6\left(3+xy\right)=3x\)
\(\Leftrightarrow2\left(3+xy\right)=x\)
\(\Leftrightarrow6+2xy=x\)
\(\Leftrightarrow6=x-2xy\)
\(\Leftrightarrow6=x\left(1-2y\right)\)
\(\Rightarrow\hept{\begin{cases}x\\1-2y\end{cases}}\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(1-2y\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(\varnothing\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(-1\) | \(\varnothing\) | \(0\) |
Vậy \(x,y\in\left\{\left(-6;-1\right);\left(-3;2\right);\left(3;-1\right);\left(1;0\right)\right\}\)
Bài làm:
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Rightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x-xy+3y=0\)\(\Leftrightarrow\left(3x-xy\right)+\left(3y-9\right)=-9\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=-9\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)mà \(9=1.9=3.3=\left(-1\right)\left(-9\right)=\left(-3\right)\left(-3\right)\)
Vì x,y là các số nguyên dương
Ta xét các trường hợp sau:
+TH1: \(\hept{\begin{cases}x-3=1\\y-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\x=12\end{cases}}\)
+TH2: \(\hept{\begin{cases}x-3=9\\y-3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=12\\y=4\end{cases}}\)
+TH3: \(\hept{\begin{cases}x-3=3\\y-3=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=6\end{cases}}}\)
Vậy có 3 cặp số (x;y) nguyên dương thỏa mãn: \(\left(4;12\right);\left(12;4\right);\left(6;6\right)\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow\left(3x-xy\right)+\left(3y-9\right)=0\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=-9\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)
Mà \(9=1,9=3,3=\left(-1\right)\left(-9\right)=\left(-3\right)\left(-3\right)\)
Vì xy là các số nguyên dương
Xét các TH sau:
\(TH_1\hept{\begin{cases}x-3=1\\y-3=9\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=12\end{cases}}}\)(tm)
\(TH_2\hept{\begin{cases}x-3=9\\x-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=12\\x=4\end{cases}}}\)(tm)
\(TH_3\hept{\begin{cases}x-3=3\\x-3=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=6\end{cases}}}\)(tm)
VẬy ta có 3 cặp (x;y) tm là (4;12);(12;4);(6;6)
Vậy
=>\(\dfrac{9-y\left(x-5\right)}{3\left(x-5\right)}=\dfrac{1}{6}\)
=>\(\dfrac{18-2y\left(x-5\right)}{6\left(x-5\right)}=\dfrac{x-5}{6\left(x-5\right)}\)
=>18-2y(x-5)=x-5
=>(x-5)+2y(x-5)=18
=>(x-5)(2y+1)=18
=>\(\left(x-5;2y+1\right)\in\left\{\left(2;9\right);\left(6;3\right);\left(18;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(7;4\right);\left(11;1\right)\right\}\)