Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{xy}{x^2.y^2}=\frac{11}{65}\Rightarrow\frac{1}{xy}=\frac{11}{65}\Rightarrow65=11.xy\)
=> x.y = 65/11 ( Do x,y nguyên dương =>xy cũng nguyên dương mà 65 không chia hết cho 11 => Dẫn đến Vô lí )
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
\(\Rightarrow\frac{x-3}{2}=\frac{10-x}{y}\)
\(\Rightarrow\left(x-3\right)y=\left(10-x\right)2\)
\(\Rightarrow xy-3y-20+2x=0\)
\(\Rightarrow x\left(y+2\right)-3\left(y+2\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)=14\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)\inƯ\left(14\right)\)
Sau đó bạn lập bảng là được .
ta có 2x−512=2y2x−512=2y
⇒2x−2y=512⇒2x−2y=512
⇒2y(2x−y−1)=256⇒2y(2x−y−1)=256
⇒2x>2y⇒2x>2y⇒x>y⇒x>y
⇒2x−y−1lẻ⇒2x−y−1lẻ
⇒2x−y−1=1⇒2x−y−1=1
⇒2y=512⇒y=9⇒2y=512⇒y=9
⇒2x=512+512=1024=210⇒2x=512+512=1024=210
⇒x=10⇒x=10
Vậy x=10 ; y=9
chúc bạn học tốt
Đặt: 2x=2k.2y
\(2^x-512=2^y\Leftrightarrow2^x-2^9=2^y\Leftrightarrow2^y\left(2^k-1\right)-512=0\left(k\inℕ,1< k\right);\)
\(\Leftrightarrow2^y\left(2^k-1\right)=512\Leftrightarrow y\ge2\);Ta dễ nhận thấy rằng: 512 chia hết cho 512 mà 2k-1 lẻ
nên 2x chia hết cho 512
mà: 2x-2y chia hết cho 512 nên 2y cũng chia hết cho 512
+) x=10;y=9=> 210-29=512 (tm)
Với x>10 mà y<x
nên: 2x-2y bé nhất là: 211-210=1024>512
Vậy: x=10;y=9
Có: 1024=2^10
=> 2.2^2.2^3......2^x=2^10
=> 1+2+3+...+x=10
1+2+3+...+x=1+2+3+4
=>x=4
Vậy x=4
Ta có 2^x-2^y=1024
=>2^y=2^x-1024
=>2^y=2^x-2^10
=>2^y=2^10
=>y=10
=>2^10=2^x-1024
=>2^x-1024=1024
=>2^x=1024+1024
=>2^x=2048
=>2^x=2^11
=>x=11
Vậy x=11;y=10
2x - 2y = 1024
=> 2y.(2x-y - 1) = 1024
+ Với x = y thì 2x-y - 1 = 20 - 1 = -1 => 2x = -1024, vô lý vì \(x\in\) N*
+ Với \(x\ne y\), do \(x;y\in\) N* => 2x-y - 1 chia 2 dư 1
Mà 1024 chia hết cho 2x-y - 1 do 2y.(2x-y - 1) = 1024
=> \(\begin{cases}2^y=1024\\2^{x-y}-1=1\end{cases}\)=> \(\begin{cases}y=10\\2^{x-y}=2\end{cases}\)=> \(\begin{cases}y=10\\x-y=1\end{cases}\)=> \(\begin{cases}y=10\\x=11\end{cases}\)
Vậy x = 11; y = 10