K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

2,4                     ;                              4,2;                        -2,-4;           -4,-2

15 tháng 7 2018

\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)

Xét nốt các trường hợp là xong

13 tháng 7 2019

Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm

24 tháng 2 2020

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.