Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Từ giả thiết ta có:
\(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)q_1\left(x\right)\\\\f\left(x\right)=\left(x^2-1\right)q_2\left(x\right)+x\end{cases}}\)
Suy ra \(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{cases}\Rightarrow\hept{\begin{cases}32+4a-2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{cases}}}\)
Đặt f(x) = 2x4+ax2+bx+c
Áp dụng định lí Be - du ta có: r = f(x)
=> {r=f(2)r=f(1)r=f(−1)
Thay x = 2; 1; -1 lần lượt vào f(x) ta được:
{f(2)=32+4a+2b+cf(1)=2+a+b+cf(−1)=2+a−b+c
Mà {f(x)⋮(x−2)f(x)chia(x2−1)dư2x => {32+4a+2b+c=02+a+b+c=22+a−b+c=−2
=> {4a+2b+c=−32(1)a+b+c=0(2)a−b+c=−4(3)
Trừ (2) cho (3) ta được: 2b=4 => b = 2
=> {4a+c=−36(4)a+c=−2(5)
Trừ (4) cho (5) ta được: 3a=−34 => a = −343 => c = 283
Vậy a = −343 ; b = 2 ; c = 283
P/s: Hi vọng bn hiểu!
Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath