Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = { abc ; acb ; bac; bca ; cab ; cba}
b) Vì a<b<c
=> 2 số nhỏ nhất là abc và acb
=> abc + acb = 277
=> (a*100+b*10+c)+ (a*100+c*10+b)=277
=> a*200 + b*11 + c*11 = 277
=> a*200 + 11 *(b+c) = 277
=> a = 1 (1)
=> 11 * (b+c)= 277-200= 77
=> (b+c) = 77 : 11
=> (b+c) =7(2)
Từ (1) và (2)
=> Tổng a + b+c là : 1+7 = 8
Câu b có lẽ bạn chưa hiểu nhỉ
Câu b: Giải
Ta có vì a<b<c : Nên tổng: abc + acb = 699
=> 100a + 10b + c + 100a + 10c + b = 699
=> a.(100 + 100) + b(10+1) + c(10+1) = 699
=> 200.a + 11.b + 11.c = 699
Mà 11.b và 11.c chia hết cho 11
=> 11.b + 11.c chia hết cho 11
Mà a99 không bao giờ chia hết cho 11
Mà 99 chia hết cho 11
Vậy 11.b + 11.c = 99
=> 11.(b+c) = 99
=> a = (699 - 99) : 200
=> a = 3
=> b + c = 99 : 11 = 9
Mà a < b < c tương đương 3 < b < c , b khác c và cả 2 đều lớn hơn 3
Mà 9 = 0+9 = 1+8=2+7=3+6=4+5
Mà Nếu bằng 0 ; 9 thì 0 nhỏ hơn 3 ; 1;8 thì 1 nhỏ hơn 3 ; 2;7 thì 2 nhỏ hơn 3 ; 3;6 thì 3 = 3 (Nên loại)
Vậy v = 4 ; c = 5
KL: a= 3; b = 4 ; c = 5
Câu b : Gọi a<b<cTa có: abc + acb = 699
=> 100a + 10b + c+10c+b = 200a + 11b+11c = 699
=> Mà 11a và 11c là các số chia hết cho 11
=> 11a + 11c = 99
=> 200a = 600
=> a = 3
Mà: 99 = 44+55 (khác nhau)
Vậy a = 3 ; b = 4 ; c = 5
a) A thuộc { abc ; acb ; bac ; bca ; cab ; cba }
b) 2 số nhỏ nhất trong tập hợp A là abc , acb. Theo đầu bài ta có :
abc + acb = 488
( 100a + 10b + c ) + ( 100a + 10c + b ) = 488
( 100a + 100a ) + ( 10b + b ) + ( c + 10c ) = 488
200a + 11b + 11c = 488
200a + 11 ( b + c ) = 488
=> 488 : 200 = a ( dư 11 ( a + b ) ) <=> 488 : 200 = 2 ( dư 88 )
=> a = 2
11 ( b + c ) = 88
=> b + c = 8
Do a < b < c nên 2 < b < c
Mà b + c = 8
=> b = 3 ; c = 5
Vậy a + b + c = 2 + 3 + 5 = 10
Ta có: \(\overline{abc}+\overline{acb}=277\)
\(\Rightarrow100a+10b+c+100a+10c+b=277\)
\(\Rightarrow200a+11b+11c=277\)
Vì a là số tự nhiên nên 200a < 277
\(\Rightarrow200a=200\Rightarrow a=1\)
11b + 11c = 277 - 200a = 277 - 200 = 77
\(\Rightarrow\) 11(b + c) = 77
\(\Rightarrow\) b + c = 7
mà a< b < c và b,c \(\in N\)
Nên (b,c) \(\in\) {(2;5);(3;4)}
Vậy (a,b,c) = (1;2;5) hoặc (a,b,c) = (1;3;4).