Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Thị Mạnh - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt: \(\frac{a}{3}=\frac{b}{6}=\frac{c}{8}=k\)
=> a = 3. k
b = 6 . k = 2. 3. k
c = 8 k = 2 . 4. k
=> BCNN ( a; b; c ) = 3 . 2. 4 . k = 24 . k
Mà theo bài ra : BCNN ( a; b ; c ) = 504
=> 24 k = 504
=> k = 21.
=> a = 3. 21 = 63 ; b = 6. 21 = 126 ; c = 8 . 21 = 168
Đặt : \(\frac{a}{3}=\frac{b}{6}=\frac{c}{8}=k\)
\(\Rightarrow a=3.k\)
\(\Rightarrow b=6.k=2.3.k\)
\(\Rightarrow c=8.k=2.4.k\)
\(\Rightarrow\) BCNN ( a , b , c ) = 3 . 2 . 4 . k = 24 . k
Mà theo đề bài : BCNN ( a , b , c ) = 504
\(\Rightarrow\) 24 . k = 504
\(\Rightarrow k=504:24\)
\(\Rightarrow\) \(k=21\)
\(\Rightarrow a=3.21=63\) ; \(b=6.21=126\) ; \(c=8.21=168\)
Vậy ....
a)7a=11b
7=11b:a
7:11=b:a
Theo yêu cầu ban đầu thì a=11; b=7
Còn theo yêu cầu sau cùng là ƯCLN(a;b)=45 thì ta chỉ cần nhân cho 45 nữa là xong ngay: a=11.45=495; b=7.45=315
VẬY: a=495; b=315
Còn bài thứ 2 thì dễ ẹt, cứ tìm 1 số a bất kì, rồi tìm số b bằng cách lấy \(a^2\), rồi tìm số c bằng cách lấy \(a^3\)
VD: a=2 thì b=\(a^2\)=4 và c=\(a^3\)=8
a.b=8 chia hết cho c, b.c=32 chia hết cho a, a.c=16 chia hết cho b
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
a=3
b=6
c=8