Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
ta có:x2-3x+2+ax+b=(x2-3x+2).Q(x)
=(x-1)(x-2).Q(x)
thay x=1 =>a+b=0(1)
thay x=2 =>2a+b=0(2)
lấy (2) - (1) =>a=0=>b=0
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
phân tích đa thức x2 - 3x +2 thành nhân tử đi
Đa thức thương có dạng: \(q\left(X\right)=x^2+cx+d\)
Ta có: \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
\(=x^4+\left(c-3\right)x^3+\left(d+2-3c\right)x^2+\left(2c-3d\right)x+2d\)
Đồng nhất ta được các hệ số tương ứng bằng nhau:
\(\hept{\begin{cases}c-3=0\\d+2-3c=a\end{cases}}\)
\(\hept{\begin{cases}2c-3d=0\\2d=b\end{cases}}\)
\(\Leftrightarrow a=-5,b=4,c=3,d=2\)
Khi đó: \(q\left(x\right)=x^2+3x+2\)