Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lời giải
a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)
(1)\(\Leftrightarrow\)
\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)
\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)
Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)
(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)
Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)
a)
<=> f(x) = .
Xét dấu của f(x) ta được tập nghiệm của bất phương trình:
T = ∪ [3; +∞).
b)
<=> f(x) = = .
f(x) không xác định với x = ± 1.
Xét dấu của f(x) cho tập nghiệm của bất phương trình:
T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3).
c) <=> f(x) =
= .
Tập nghiệm: \(\left(-12;-4\right)\cup\left(-3;0\right)\).
a) <=>
Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).
b) <=>
Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).
a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
Biện luận:
Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
Với m = -3 hệ vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).
b) Đkxđ: \(x\ne\dfrac{1}{2}\).
\(pt\Leftrightarrow\left(m+3\right)x=\left(2x-1\right)\left(3m+2\right)\)
\(\Leftrightarrow\left(5m+1\right)x=3m+2\). (*)
Xét \(5m+1=0\Leftrightarrow m=\dfrac{-1}{5}\) thay vào phương trình ta có:
\(0x=\dfrac{7}{5}\) phương trình vô nghiệm.
Xét \(5m+1\ne0\Leftrightarrow m\ne\dfrac{-1}{5}\).
Khi đó (*) có nghiệm là: \(x=\dfrac{3m+2}{5m+1}\).
Để \(x=\dfrac{3m+2}{5m+1}\) là nghiệm của phương trình thì:
\(x=\dfrac{3m+2}{5m+1}\ne\dfrac{1}{2}\)\(\Leftrightarrow2\left(3m+2\right)\ne5m+1\)\(\Leftrightarrow m\ne-3\).
Biện luận:
Với \(m=-\dfrac{1}{5}\) hoặc \(m=-3\) phương trình vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne-\dfrac{1}{5}\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{3m+2}{5m+1}\).
e: =>-3<5x-12<3
=>9<5x<15
=>9/5<x<3
f: =>3x+15>=3 hoặc 3x+15<=-3
=>3x>=-12 hoặc 3x<=-18
=>x<=-6 hoặc x>=-4
b: =>(2x-7)(x-5)<=0
=>7/2<=x<=5
a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)
=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)
<=>\(-2x^2+8x-3=-2x^2+8\)
<=>\(8x=11< =>x=\dfrac{11}{8}\)
vậy..........
b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)
<=>\(3x^2-25x-6=3x^2-x+1\)
<=>\(-24x=7< =>x=\dfrac{-7}{24}\)
vậy..................
câu c tương tự nhé :)
pt(1)\(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow\dfrac{4\left(x-3\right)^2}{12}-\dfrac{\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow\dfrac{\left(2x-6\right)^2-\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow-5\cdot\left(4x-7\right)\le12x\)
\(\Leftrightarrow-20x+35\le12x\)
\(\Leftrightarrow32x\ge35\)
\(\Leftrightarrow x\ge\dfrac{35}{32}\left(1\right)\)
Pt(2)\(\Leftrightarrow2+x+1< \dfrac{12-x+1}{4}\)
\(\Leftrightarrow x+3< \dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12< 13-x\)
\(\Leftrightarrow5x< 1\)
\(\Leftrightarrow x< \dfrac{1}{5}\left(2\right)\)
(1) và (2) mâu thuẫn =>không có x tm cả 2 bpt trên
\(2+\dfrac{3\left(x+1\right)}{3}< 3-\dfrac{x-1}{4}\)
\(\Leftrightarrow24+12x+12< 36-3x+3\)
\(\Leftrightarrow15x< 36+3-12-24\)
\(\Leftrightarrow15x< 3\)
\(\Leftrightarrow x< \dfrac{1}{5}\)