Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1)(2x-1)=0
<=>2x^2 - 3x + 1 =0
Căn bằng hệ số ta có \(\hept{\begin{cases}m=2\\-\left(m+1\right)=-3\\1=1\end{cases}}\)<=>m=2
a) \(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
Thay x=1/3 vào phương trình \(mx+2=0\):
\(\frac{m}{3}+2=0\Leftrightarrow m=-6\)
Vậy m=-6
b) \(2x-7=0\Leftrightarrow x=\frac{7}{2}\)
Thay x=7/2 vào phương trình (m-1)x-6=0:
\(\left(m-1\right)\cdot\frac{7}{2}-6=0\Leftrightarrow m-1=\frac{12}{7}\Leftrightarrow m=\frac{19}{7}\)
Vậy m=19/7
* Về cách trình bày, tớ ko chắc chắn là đúng.
a) Ta có: \(\hept{\begin{cases}mx^2-\left(m+1\right)x+1=0\\\left(x-1\right)\left(2x-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}mx^2-\left(m+1\right)x+1=0\\2x^2-3x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=2\\m+1=3\end{cases}}\Rightarrow m=2\)
b) Ta có: \(\hept{\begin{cases}\left(x-3\right)\left(ax+2\right)=0\\\left(2x+b\right)\left(x+1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}ax^2+\left(2-3a\right)x-6=0\\2x^2+\left(b+2\right)x+b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=-6\end{cases}}\)
a: (x-1)(2x-1)=0
=>x=1 hoặc x=1/2
Để hai pt tương đương thì \(\left\{{}\begin{matrix}m-\left(m+1\right)+1=0\\\dfrac{1}{4}m-\dfrac{1}{2}\left(m+1\right)+1=0\end{matrix}\right.\)
=>1/4m-1/2m-1/2+1=0
=>-1/4m+1/2=0
=>-1/4m=-1/2
=>m=2
b: Để hai pt tương đương thì
\(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\2\cdot3+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)