Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,1^{10}=0,1^{10}\)
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}\)
vi \(0,1^{10}>0,09^{10}\)nen \(0,1^{10}>0.3^{20}\)
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)
\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)
Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)
\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)
Thế vào: a + b + c = 69
\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)
\(\Rightarrow c=45\)
\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)
a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)
Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:
\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)
b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)
a) \(\left(0,1\right)^{10}\) và \(\left(0,3\right)^{20}\)
Vì \(\left\{{}\begin{matrix}0,1< 0,3\\10< 20\end{matrix}\right.\)
\(\Rightarrow\left(0,3\right)^{20}>\left(0,1\right)^{10}\)
b) \(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\) và \(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)
Vì \(\left\{{}\begin{matrix}\left(-\dfrac{1}{2}\right)^{5^{1^3}}=\left(-\dfrac{1}{2}\right)^5\\\left(-\dfrac{1}{3}\right)^{3^{1^5}}=\left(-\dfrac{1}{3}\right)^3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}-\dfrac{1}{2}< -\dfrac{1}{3}\\5>3\end{matrix}\right.\)
\(\Rightarrow\left(-\dfrac{1}{2}\right)^5< \left(-\dfrac{1}{3}\right)^3\)
Vậy
\(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\) < \(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)
Ta có:
\(\frac{52}{a-20}=\frac{39}{b-15}=\frac{13}{c-5}\)
\(\Rightarrow\frac{a-20}{52}=\frac{b-15}{39}=\frac{c-5}{13}\)
\(=\frac{a}{52}-\frac{20}{52}=\frac{b}{39}-\frac{15}{39}=\frac{c}{13}-\frac{5}{13}\)
\(=\frac{a}{52}-\frac{5}{13}=\frac{b}{39}-\frac{5}{13}=\frac{c}{13}-\frac{5}{13}\)
\(\Rightarrow\frac{a}{52}=\frac{b}{39}=\frac{c}{13}\)
\(\Rightarrow\frac{a^2}{52^2}=\frac{b^2}{39^2}=\frac{c^2}{13^2}=\frac{bc}{39.13}=\frac{3}{3.13.13}=\frac{1}{13^2}\)
\(\Rightarrow\begin{cases}a^2=\frac{1}{13^2}.52^2=4^2\\b^2=\frac{1}{13^2}.39^2=3^2\\c^2=\frac{1}{13^2}.13^2=1^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{3;-3\right\}\\c\in\left\{1;-1\right\}\end{cases}\)
Vậy giá trị (a;b;c) tương ứng thỏa mãn là: (4;3;1) ; (-4;-3;-1)