K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2023

Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5, 

b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3

 

22 tháng 1 2023

Vì a,b,c khác nhau đôi một

31 tháng 1 2022

Ta có:\(\overline{acb}+\overline{cab}=2\cdot\overline{abc}\left(b>c\right)\)

*Xét trường hợp a:

\(\overline{a}+\overline{c}=2\cdot\overline{a}\Rightarrow\overline{a}=\overline{c}\)

Mà trường hợp này \(\overline{a,b,c}\)phải là số đôi một khác nhau nên a,b,c không có giá trị nào thỏa mãn

22 tháng 2 2017

Gợi ý: Giả sử \(c\le d\)

Ta có: \(0< a+b\le18\)

\(\Leftrightarrow0< cd\le18\)

\(\Rightarrow c^2\le cd\le18\)

\(\Rightarrow0< c\le4\)

Thế c = 1 vào ta được

\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)

\(\Rightarrow1+a+b=ab\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)

\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)

\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)

\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)

Tương tự các trường hợp còn lại

4 tháng 2 2017

Bài 2 :

a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.

Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.

b) Trước hết : \(23\le\overline{a_7a_8}\le46\)

Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)

Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.

Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.

Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).

4 tháng 2 2017

Bài 1 :

Không đủ dữ kiện.

Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.

Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9

Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d 

Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.

Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯

Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9 

Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.

Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.

Nếu có chắc thử sai nhưng hướng làm là thế 

27 tháng 11 2017
kết quả là bằng 7 vì 7 là số mình thích nhất. biết vì sao mình thích số 7 không. vì số 7 là số áo của ronaldo và là tháng mình sinh ra. kết quả là bằng 7 ok. vỗ tay ... vỗ tay
24 tháng 2 2018

Ta có : 

\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)

\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)

\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)

\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)

\(\Leftrightarrow\)\(\overline{aba}=101\)

\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)

Vậy \(a=1\) và \(b=0\)

21 tháng 2 2018

a=1

b=0

11 tháng 3 2019
https://i.imgur.com/GUNSPDr.jpg
11 tháng 3 2019

Có bạn để nhờ mà không nhờ nhỉ :<

29 tháng 8 2019

cau hoi cua huyn mau/olm.vn