K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y
 

 

29 tháng 1 2020

Ta có: \(2\left(x^2+y^2\right)=1+xy\)

\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)

\(P=7\left(x^4+y^4\right)+4x^2y^2\)

\(=7x^4+7y^4+4x^2y^2\)

\(\Rightarrow P=28x^3+28y^3+16xy\)

\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)

\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)

23 tháng 2 2020

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

bzMIzRW.png\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

23 tháng 2 2020

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

17 tháng 8 2018

x^2+xy+3x+2y=1 tương đương y=(1-x^2-3x)/(x+2) suy ra x+2 thuộc ước của 3

17 tháng 8 2018

tại sao lại là ước của3

mình làm cho bạn 2 cách nha

Cách 1 )

ta có \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)

ta có \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)

ta có \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

zậy \(minM=\frac{x^2+4}{y^2+1}khi\hept{\begin{cases}x=1\\y=2\end{cases}}\)

cách 2)

ta có \(1\le y\le2;xy+2\ge2y\Leftrightarrow4xy+8\ge8y;4x^2+y^2+8\ge4xy+8\)

từ đó ta có

\(4\left(x^2+4\right)\ge-y^2+8+8y=4\left(y^2+1\right)+\left(5y+2\right)\left(2-y\right)\ge4\left(x^2+1\right)\Rightarrow M=1\)

zậy kết luận như cách 1

NV
17 tháng 8 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)