K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2024

\(2x^2-8x=13-3y^2\)

\(\Leftrightarrow2x^2-8x+8=21-3y^2\)

\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)

Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)

\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)

Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ

\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)

Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)

5 tháng 5 2020

a) x,y nguyên => x+4; y-8 nguyên

=> x+4; y-8\(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

ta có bảng

x+4-6-3-2-11236
x-10-7-6-5-3-2-12
y-8-1-2-3-66321
y76521411109

Vậy (x;y)={(-10;7);(-7;6);(-6;5);(-5;2);(-3;14);(-2;11);(-1;10);(2;9)}

5 tháng 5 2020

b) 2x+xy+3y+6=10

<=> x(2+y)+3(y+2)=10

<=> (y+2)(x+3)=10

x,y nguyên => y+2; x+3 nguyên 

=> y+2; x+3\(\in\)Ư(10)={-10;-5;-2;-1;1;2;5;10}

ta có bảng

x+3-10-5-2-112510
x-13-8-5-4-2-127
y+2-1-2-5-1010521
y-3-4-7-12830-1

a: =>3y=6x-1

=>y=2x-1/3

Vậy: (a)//(e)

b: y=-0,5x-4

c: y=1/2x+3

d: =>2y=6-x

=>2y=(6-x)/2=-0,5x+3

f: =>y=0,5x+1=1/2x+1

Vậy: (c)//(f), (d)//(b)

19 tháng 5 2016

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

19 tháng 5 2016

Nguyễn Thị Mai copy trên mạng,ko tính