Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm k là số các cặp số thực (x;y) khác 0 thõa mãn:
\(\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y=0\)
MÌnh nghĩ thế này ko bt đúng ko
Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)
Dấu = xảy ra khi x=y=1
Vậy (x;y)=(1;1)
Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Áp dụng BĐt cô-si , ta có
\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)
Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=y=1
^_^
Bạn chú ý x;y là số nguyên dương, như thế hiển nhiên ta sẽ có x+y>x−(y+6) nhưng mà theo điều giả sử x≥y+6 nên x−(y+6)≥0 với mọi x,y
Lai do x,y nguyên dương nên x+y≥1 Như vậy hiển nhiên là (x+y)^3>(x−y−6)^2 nên pt vô nghiệm
https://diendantoanhoc.net/topic/113122-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-nghi%E1%BB%87m-nguy%C3%AAn-d%C6%B0%C6%A1ng-xy3x-y-62/
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
Với y nguyên thì \(2y^2-1\ne0\), Từ phương trình đề cho suy ra
\(x=\frac{y^4}{2y^2-1}\). Để x nguyên thì :
\(y^4⋮2y^2-1\)
\(\Leftrightarrow8y^4⋮2y^2-1\)
\(\Leftrightarrow2.\left(4y^4-1\right)+2⋮2y^2-1\)
\(\Leftrightarrow2\left(2y^2-1\right)\left(2y^2+1\right)+2⋮2y^2-1\)
\(\Leftrightarrow2y^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)
\(\Leftrightarrow2y^2\in\left\{0,2,-1,3\right\}\)
\(\Leftrightarrow y\in\left\{0,1,-1\right\}\) ( Do y nguyên )
Với \(y=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x=1\)
Với \(y=-1\Rightarrow x=1\)