Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)
<=>\(\frac{2x^2-5x+19}{2x-1}=y\)
Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)
\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)
đến đây lấp bảng nhé !
^_^
\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)
Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)
phương trình tương đương với:
2x-4xy+2y-1= -1
=>(2x-1).(1-2y)= -1
=>(2x-1)(2y-1)=1 tìm được 2 cặp giá trị là \(\orbr{\begin{cases}x=y=0\left(tm\right)\\x=y=2\left(tm\right)\end{cases}}\)
\(x-2xy+y=0\)
\(\Rightarrow x-(2xy-y)=0\)
\(\Rightarrow x-y(2x-1)=0\)
\(\Rightarrow2x-2y(2x-1)=0\)
\(\Rightarrow(2x-1)-2y(2x-1)=-1\)
\(\Rightarrow(2x-1)(1-2y)=-1\)
\(\Rightarrow(2x-1;1-2y)=(-1;1);(1;-1)\)
\(\Rightarrow(x,y)=(0,0);(1,1)\)
Vậy : ....
=> 2x-4xy+2y-3 = 0
=> (2x-4xy)-(1-2y) - 2 = 0
=> 2x.(1-2y)-(1-2y) = 2
=> (1-2y).(2x-1) = 2
Đến đó bạn dùng quan hệ ước bội mà giải nha !
Tk mk nha
Để giải phương trình 2��−�+�−3=02xy−x+y−3=0 và tìm các cặp số nguyên �,�x,y, chúng ta có thể sử dụng phương pháp phân tích hệ số.
Đầu tiên, chúng ta có thể nhận thấy rằng phương trình có thể được viết lại dưới dạng:
2��−�+�−3=02xy−x+y−3=0
2��−�+�=32xy−x+y=3
Bây giờ, chúng ta có thể thử phân tích hệ số bằng cách chia phương trình thành các thành phần nhỏ hơn:
��+��−�+�=3xy+xy−x+y=3
�(�−1)+�(�−1)=3x(y−1)+y(x−1)=3
Giờ, chúng ta thấy rằng chúng ta có thể tách phần tử của x và y ra khỏi dấu ngoặc:
�(�−1)+�(�−1)=3x(y−1)+y(x−1)=3
�(�−1)+�(�−1)+1−1=3x(y−1)+y(x−1)+1−1=3
�(�−1)+�(�−1)+1−1=3x(y−1)+y(x−1)+1−1=3
(�−1)(�+1)=4(x−1)(y+1)=4
Bây giờ, chúng ta cần tìm tất cả các cặp số nguyên �,�x,y sao cho tích của �−1x−1 và �+1y+1 bằng 4. Cặp số nguyên thỏa mãn điều kiện này bao gồm:
- �−1=1,�+1=4⇒�=2,�=3x−1=1,y+1=4⇒x=2,y=3
- �−1=2,�+1=2⇒�=3,�=1x−1=2,y+1=2⇒x=3,y=1
- �−1=4,�+1=1⇒�=5,�=−1x−1=4,y+1=1⇒x=5,y=−1
- �−1=−1,�+1=−4⇒�=0,�=−5x−1=−1,y+1=−4⇒x=0,y=−5
- �−1=−2,�+1=−2⇒�=−1,�=−3x−1=−2,y+1=−2⇒x=−1,y=−3
- �−1=−4,�+1=−1⇒�=−3,�=0x−1=−4,y+1=−1⇒x=−3,y=0
Do đó, các cặp số nguyên �,�x,y thỏa mãn phương trình là:
(2,3),(3,1),(5,−1),(0,−5),(−1,−3),(−3,0)(2,3),(3,1),(5,−1),(0,−5),(−1,−3),(−3,0)
Theo đề bài:
2xy - y + 19 = 0
=> y(2x - 1) = -19
KL: (x; y) = (-9; 1) ; (10; -1)
Vì x; y nguyên nên chắc cách này đc còn nếu mừ có cách nào khác thì t ko bik (quên gần hết về máy cái này ròi -_-)
2xy - y + 19 = 0 sao lại thành y(2x-1) = 19. = -19 chứ?