K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Từ \(x+y=4\Rightarrow y=4-x\)

\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :

\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)

Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)

Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0

Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)

1)

Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)

Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)

+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)

+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)

+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)

Vậy GTNN của \(C=-6\) khi \(x=\pm2\)

2) 

Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)

Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)

Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)

5 tháng 1 2020

Ví dụ một bài toán : 

Tìm GTLN của B = 10-4 | x-2| 

Vì |x-2| \(\ge0\forall x\)

\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ

7 tháng 1 2016

(x;y)\(\in\){(0;4);(1;3);(2;2)}

1 tháng 2 2017

\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2=\frac{x^2}{25}=\frac{y^2}{16}\)

Áp dụng TC DTSBN ta có :

\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)

\(\Rightarrow\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{-5}{3};\frac{5}{3}\)

\(\Rightarrow\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow y=\frac{-4}{3};\frac{4}{3}\)

1 tháng 2 2017

Ta có 

4x=5y và x2-y2=1

Có \(\frac{x}{5}=\frac{y}{4}\)và x2-y2=1

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)

Suy ra: \(\frac{x^2}{5^2}=\frac{1}{9}\)=>\(x^2=\frac{1}{9}.25=\frac{25}{9}\)=>\(x=\frac{5}{3}or\frac{-5}{3}\)

    Cách tìm y tương tự như vậy

Kq cuối cùng là \(x=\frac{5}{3}or\frac{-5}{3}\)\(y=\frac{4}{3}or\frac{-4}{3}\)

7 tháng 2 2020

(x+y)2=(x+y)1(x+y)2=(x+y)1

⇒(x+y)2−(x+y)1=0⇒(x+y)2−(x+y)1=0

⇒(x+y)[(x+y)−1]=0⇒(x+y)[(x+y)−1]=0

⇒[x=−yx+y=1