\(x^2-5x+7=3^y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

PT\(\Leftrightarrow\)25+y2=17-2xy

\(\Leftrightarrow\)y(y-2x)=-8

\(\Leftrightarrow\)y\(\in\)Ư(-8)

Ta có bảng

y1-12-24-48-8
y-2x-88-44-22-11
x4,5-4,53-33-34,5-4,5

Vì x,y\(\in\)Z\(\Rightarrow\)(x;y) là (2;3);(-2;-3);(4;3);(-4;-3)

NM
17 tháng 3 2021

a. ta có 

\(4x^2+\left(x-y\right)^2=17\)

do x nguyên nên \(4x^2\in\left\{0,4,16\right\}\) tương ứng ta tìm được \(\left(x-y\right)^2\in\left\{17,13,1\right\}\)

vậy chỉ có \(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=1\end{cases}}\end{cases}}}\text{ hoặc }\hept{\begin{cases}x=-2\\\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Rightarrow\left(x,y\right)\in\left\{\left(2,1\right);\left(2,3\right);\left(-2;-1\right);\left(-2;-3\right)\right\}}\)

b. ta có \(9xy+3x+3y=12\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=13\)

từ đó \(\Rightarrow\hept{\begin{cases}3x+1=\pm1\\3y+1=\pm13\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}3x+1=\pm13\\3y+1=\pm1\end{cases}}\) vậy ta tìm được \(\left(x,y\right)\in\left\{\left(0,4\right),\left(4,0\right)\right\}\)

10 tháng 5 2019

LINK THAM KHẢO

https://olm.vn/hoi-dap/detail/101095140158.html

11 tháng 5 2019

\(x^2+x+3=y^2\)

\(\Leftrightarrow4x^2+4x+12=4y^2\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-4y^2=-11\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y\right)^2=-11\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+y+2y\right)=-11=\left(-1\right)\cdot11=11\cdot\left(-1\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1\)

Đến đây bạn tự làm nốt nhá.tớ làm thử cho 1 TH tham khảo nhé !

\(\hept{\begin{cases}2x+1-2y=-1\\2x+1+2y=11\end{cases}}\Rightarrow\hept{\begin{cases}x-y=-1\\x+y=5\end{cases}}\Rightarrow x=2\Rightarrow y=3\)

Còn lại tương tự:3

câu a ) vào đây tham khảo PT nghiệm nguyên: $5x^{2}+y^{2}=17+2xy$ - Số học - Diễn đàn Toán học

< https://diendantoanhoc.net/topic/122892-pt-nghi%E1%BB%87m-nguy%C3%AAn-5x2y2172xy/ >

hoặc nghiệm nguyên của phương trình : 5x^2 + y^2=17+2xy là gì? | Yahoo Hỏi & Đáp

< https://vn.answers.yahoo.com/question/index?qid=20100809043556AAKGXa9 >