Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 2 + 22 + 23 + 24 + ... + 299
2A = 22 + 23 + 24 + 25 + ... + 2100
2A - A = (22 + 23 + 24 + 25 + ... + 2100) - (2 + 22 + 23 + 24 + ... + 299)
A = 2100 - 2
=(1+2+3+4+...+51)2
=13262
=1758276
Minh dung roi ban nhe
Tick cho minh nha
a) A = 2 + 23+25+...+249
=> 22.A = 23+25+27+...+251
22.A - A = 251-2
3A=251-2
\(A=\frac{2^{51}-2}{3}\)
b) B = 31-35+39-313+...-381
=> 34.B = 35 - 39+ 313 - 317+...-385
=> 34.B - B = -385-31
81B - B = -385-31
\(B=\frac{-3^{85}-3^1}{80}\)
c) C = -4-42-43-44-...-4100
=> 4C = -42-43-44-45-...-4101
=> 4C - C = -4101+4
3C = -4101+4
\(C=\frac{-4^{101}+4}{3}\)
Ta có : A = 2 + 22 + 23 + ..... + 2100
=> 2A = 22 + 23 + ..... + 2101
=> 2A - A = 2101 - 2
=> A = 2101 - 2
=> A = 2100 . 2 - 2
=> A = (220)5 . 2 - 2
=> A = (1048576)5 . 2 - 2 (những số có hai chữ số tận cùng là 76 dù nâng lên lũy thừa bao nhiêu chữ số
tận cùng cũng vẫn là 76)
=> A = (......76).2 - 2
=> A = (....52) - 2
=> A = (....50)
Ta có : B = 3 + 32 + ..... + 3100
=> 3B = 32 + 33 + ..... + 3101
=> 3B - A = 3101 - 3
=> 2B = 3101 - 3
=> B = \(\frac{3^{101}-3}{2}\)
=> B = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> B = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)
(2 mũ 0+2 mũ 1 + 2 mũ 2 + 2 mũ 3)+...+(2 mũ 97+2 mũ 98+2 mũ 99+2 mũ 100)
=( 1 + 2 + 4 + 8 )+...+(2 mũ 97x1+2 mũ 97x2 +2 mũ 97x4+2 mũ 97x8)
= 15 +...+ 2 mũ 97x(1+2+4+8)
= 15 +...+2 mũ 97x15
chia hêt cho 15 dư 0
a, a.a.a^2.a^4
=a^8
b, 4^3.2^4.2^5.16
=(2^2)^3.2^4.2^5.2^3
=2^6.2^4.2^5.2^3
=2^18
c, 5^2.5^3.125
=5^2.5^3.5^3
=5^8
d, 3^2.9.81
=3^2.3^2.3^4
=3^8
e, 2^3.2^3.18^2
=2^6.(2.3^2)^2
=2^6.2^2.3^4
=2^8.3^4
a)a.a.a^2.a^4 = a^2.a^2.a^4=a^8
b)4^3.2^4.2^5.16
=(2^2)^3.2^4.2^5.2^4
=2^6.2^4.2^4.2^4
=2^18
c)3^2.9.81
=3^2.3^2.3^4
=3^8
Xét 2S=2^101-2^100-2^99-...-2^3-2^2-2
suy ra: 2S-S=2^101-2^100-2^99-...-2^3-2^2-2-(2^100-2^99-2^98-...-2^2-2^1-1)
S=2^101-2^100-2^99-...-2^3-2^2-2-2^100+2^99+2^98+...+2^2+2^1+1
S=2^101-2.2^100+1
S=2^101-2^101+1
S=0+1=1
***Tớ ko biết có đúng ko nữa!!!!
A=2100-(299+298+297+...+2+1)
Đặt B=299+298+297+...+2+1
sau đó bạn tính B ra đc B=2100-1(bạn tự tính mấy bước trên nha)
Thay B vào A ta có
A=2100-(2100-1)
=2100-2100+1
=0+1
=1
\(s=1^2+2^2+...+100^2\)\(=1.\left(2-1\right)+2.\left(3-1\right)+...\)\(+100.\left(100-1\right)\)
\(=1.2-1.1+2.3-1.2+...\)\(+100.101-1.100\)
\(=\left(1.2+2.3+3.4+...+100.101\right)\)\(-\left(1+2+3+..+100\right)\)
\(=\orbr{ }1.2.3+2.3.\left(4-1\right)\)\(+3.4.\left(5-2\right)+...+100.101.\left(102-99\right)\)/\(3\)\(+\orbr{\begin{cases}\left(100+1\right).100\\2\end{cases}}\) \(=\left(1.2.3+2.3.3-1.2.3+3.4.5-2.3.4+...+100.101.3\right)\)/\(3\) \(+5050\) \(=\frac{100.101.102}{3}+5050=348450\)
mk làm đúng đó nhé!!!