K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Trước hết ta có thể giả sử q=2 

* Nếu n là số nguyên dương lẻ thì ta có: 

\(p^n+2^n=\left(p+2\right)\left(\frac{p^n+2^n}{p+2}\right)=r^2\)  mà do r là số nguyên tố nên ta phải có: 

\(p+2=\frac{p^n+2^n}{p+2}=r\)

Nếu n là số lẻ và \(n\ge3\) thì ta có: \(\frac{p^n+2^n}{p+2}>p+2\)    từ đây ta dẫn đến một điều vô lý. Do đó, ta phải có: n=1.

* Nếu n là số chẵn, đặt n=2k  , \(k\in Z^+\) thì từ đây ta có: \(\left(p^k\right)^2+\left(2^k\right)^2=r^2\)  mà dễ thấy p  , r phải phân biệt nên đây là bộ ba Phythagore nên tồn tại  x,y:(x,y)  = 1 và x,y khác tính chẵn lẻ thỏa mãn: 

\(\hept{\begin{cases}p^k=2xy\\2^k=x^2-y^2\end{cases}}\)     hoặc \(\hept{\begin{cases}2^k=2xy\\p^k=x^2-y^2\end{cases}}\)

Mà p là số nguyên tố nên trường hợp này không xảy ra.

Vậy ta phải có: n=1

Chúc bạn học tốt !!!

24 tháng 3 2020

khó quá . mik dở phần số nguyên tố lắm.

24 tháng 3 2020

\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)

\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)

\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)

\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)

\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)

4 tháng 2 2017

Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.

29 tháng 5 2018

Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p

\(\Rightarrow\)Chắc chắn r là số lẻ.

\(\Rightarrow\)p hoặc q là số chẵn.

Giả sử p chẵn \(\Rightarrow\)p = 2.

Ta có:\(16+q^4=r^4\)

\(\Leftrightarrow r^4-q^4=16\)

\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)

\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)

Ta lại có: \(r^2-q^2< r^2+q^2\) 

\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)

Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.

2 tháng 7 2016

Xét q = 3 
Ta có. p^2-3p-27 =27
=> p^2 - 3p - 54 = 0
=> p = - 6 hoặc p = 9 (đều không TM)
Xét q # 3. Ta có
p^2 - pq - q^3 = 27
=> p^2 - pq = q^3 + 27
=> p(p-q) = (q+3)[q^2 - 3q + 9] (*)
Nhận xét.
*) p > p - q (1)
*) q^2 -3q+ 9 -(q+3)
= q^2 -4q +6 = (q-2)^2 +2>0
=> q^2 - 3q + 9 > q + 3
*) ƯCLN( q^2 - 3q + 9; q+3)
= ( q(q+3)-6(q+3) +27;q+3)
= (27; q+3) = (3^3; q+3)
= 1 (3) ( vì q#3 nên q + 3 không chia hết cho 3...)
Từ (1); (2); (3) => (*) <=>
{ p = q^2 - 3q + 9
{ p-q = q + 3
=> 2q + 3 = q^2 - 3q + 9
=> q^2 - 5q + 6 = 0.=> q = 2 hoặc q = 3 (đã xét )
Với q = 2 ta có p = 2q + 3
=> p = 7 (TM)
ĐS: p = 7; q = 2

2 tháng 7 2016

9 và 3

-9 và -3

26 tháng 5 2018

Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}

Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3

p²+q²=2²+3²=13 là số nguyên tố ( đọc)

9 tháng 6 2016

Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại

+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn

+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)

=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3

Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.

Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3

Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại

Vậy n = 3

Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)

Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8

Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5