Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 số nguyên liên tiếp có sáu số chia hết cho 3
=>tổng của 20 số chính phương liên tiếp có 6 số chia hết cho 3 và có 14 số chia dư 1
=> tổng 20 số chính phương liên tiếp chia 3 dư 2
=> tổng 20 số chính phương liên tiếp không phải số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Chúc bạn học tốt.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
9 và 16
2 số chính phương liên tiếp đó là: 9 và 16 .
Đáp số: 9;16