Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả hai bạn đều giải nhưng mình ko biết bạn nào đúng cả, ai có bít chỉ với
Vì UCLN ( a;b ) = 4 => a = 4m ; b = 4n ( m > n ; ( m ; n ) = 1 )
Theo bài ra ta có :
4m + 4n = 16
=> 4 . ( m + n ) = 16
=> m + n = 4 mà m > n
Ta có bảng :
m 3
n 1
a 12
b 4
Vậy a = 12 ; b = 4
Vì (a,b)=4 nên ta có : \(\hept{\begin{cases}a⋮4\\b⋮4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=4m\\b=4n\\\left(m,n\right)=1;m>n\end{cases}}\)
Mà a+b=16
\(\Rightarrow\)4m+4n=16
\(\Rightarrow\)4(m+n)=16
\(\Rightarrow\)m+n=4
Vì (m,n)=1 và m>n nên ta có :
m 3
n 1
a 12
b 4
Vậy a=12 và b=4
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)
Từ dữ liệu đề bài cho, ta có : + Vì ƯCLN(a, b) = 15, nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a = 15m; b = 15n (1) và ƯCLN(m, n) = 1 (2) + Vì BCNN(a, b) = 300, nên theo trên, ta suy ra : + Vì a + 15 = b, nên theo trên, ta suy ra :
Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có trường hợp : m = 4, n = 5 là thoả mãn điều kiện (4). Vậy với m = 4, n = 5, ta được các số phải tìm là : a = 15 . 4 = 60; b = 15 . 5 = 75 |
Ta có: ƯCLN (a,b) = 36
=> a = 36m ; b =36n
Với n, n \(\in\)N và (m, n) =1
Lại có a + b = 252 => 36m + 36n = 252
=> 36.(m + n) = 252 => m + n = 7
=> m + n = 1 + 6 = 2 + 5 = 3 + 4
Ta có bảng giá trị tương ứng sau:
Vạy các giá trị a,b tương ứng ở bảng trên là các giá trị cần tìm.