Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)
b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)
\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)
c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)
\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)
Tuy có vẻ hơi muộn nhưng thôi
Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)
Thật vậy, ta có :
72004 với lũy thừa là 2004 ⋮ 4
⇒ 72004 = ( .......... 9 )
392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4
⇒ 392^94 = ( .......... 9 )
⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10
⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
A=1/10.(72004-392^94) là số tự nhiên.
1/ a, \(50-\left[30-\left(6-2\right)^2\right]\)
\(=50-\left[30-3^2\right]\)
\(=50-30+9\)
\(=20+9=29\)
2/ a, \(124+\left(118-x\right)=217\)
\(\Leftrightarrow118-x=3\)
\(\Leftrightarrow x=115\)
Vậy ...
b/ \(814-\left(x-305\right)=712\)
\(\Leftrightarrow x-305=102\)
\(\Leftrightarrow x=407\)
Vậy ...
c/ \(x-32:16=48\)
\(\Leftrightarrow x-2=48\)
\(\Leftrightarrow x=50\)
Vậy ...
d/ \(\left(x-32\right):16=48\)
\(\Leftrightarrow x-32=768\)
\(\Leftrightarrow x=800\)
Vậy .
Giống nhau:
- Đều là các số tự nhiên
Khác nhau:
-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó
-Hợp số là số tự nhiên có nhiều hơn hai ước
Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.
a) ( x - 25 ) - 120 = 3
x - 25 = 3 + 120
x - 25 = 123
x = 123 + 25
x = 148
b) 156 - ( x + 61 ) = 82
x + 61 = 156 - 82
x + 61 = 74
x = 74 - 61
x = 13
Vậy x = 13
Ta có: \(\left|x-y\right|+\left|x-1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x-1\right|+2017\ge2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|x-1\right|=0\end{matrix}\right.\Rightarrow x=y=1\)
Vậy \(MIN_A=2017\) khi x = y = 1
\(=>9x+2=60:3\)
\(=>9x+2=20\)
\(=>9x=20-2\)
\(=>9x=18\)
\(=>x=18:2=2\)
Vậy số cần tìm là 2
CHÚC BẠN HỌC TỐT............
( 9x + 2 ) . 3 = 60
( 9x + 2 ) = 60 : 3
9x + 2 = 20
9x = 20 - 2
9x =18
x = 18 : 9
x = 2
\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)
\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)
\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)
\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)
\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)
\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)
\(=1:2\)
\(=0.5\)
\(\text{(−1)+(−3)+...+(−199)+(−201)(−1)+(−3)+...+(−199)+(−201)}\)
=\(\text{−(1+3+...+199+201)=−(1+3+...+199+201)}\)
=\(\dfrac{\left(201+1\right).\left[\left(201-1\right)\right]:2+1}{2}\)
= \(\dfrac{-200.102}{2}=\dfrac{-20400}{2}=-10200\)
\(\text{17 + ( − 20 ) + 23 + ( − 26 ) + . . . + 53 + ( − 56 ) = [ 17 + ( − 20 ) ] + [ 23 + ( − 26 ) ] + . . . + [ 53 + ( − 56 ) ] = ( − 3 ) + ( − 3 ) + . . . + ( − 3 ) = ( − 3 ) . ( 7 ) = − 21}\)
\(\text{=17 + ( − 20 ) + 23 + ( − 26 ) + . . . + 53 + ( − 56 ) = [ 17 + ( − 20 ) ] + [ 23 + ( − 26 ) ] + . . . + [ 53 + ( − 56 ) ] = ( − 3 ) + ( − 3 ) + . . . + ( − 3 ) = ( − 3 ) . ( 7 ) = − 21}\)
\(\text{ = ( − 3 ) + ( − 3 ) + . . . + ( − 3 )}\)
\(\text{= ( − 3 ) . ( 7 ) = − 21}\)